首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of some free amino acids of the ovule on growth and cellular development of the pollen tube of Juniperus communis L. in vitro. The extraction and analysis of free amino acids show that a partial complementary relationship exists between the amino acids of the pollen and those of the ovule of Juniperus communis. The main free amino acids of the pollen are threonine, proline, arginine and γ-aminobutyric acid; those of the ovule are threonine, serine, alanine, citrulline and glycine. The addition of the main amino acids of the ovule in the pollen culture media increased the growth and the cell development of pollen tubes cultured in vitro. This indicates the nature of the correlations which exist between the male and female gametophyte of Juniperus communis.  相似文献   

2.
3.
Fernando DD 《Proteomics》2005,5(18):4917-4926
The differentially expressed proteins in pollen tubes indicate their specific roles in this stage of male gametophyte development. To isolate these proteins, 2-DE was done using ungerminated pollen and 2-day-old pollen tubes of Pinus strobus. Results show that 645 and 647 protein spots were clearly resolved from pollen grains and pollen tubes, respectively. Thirty-eight protein spots were expressed only in pollen tubes, while 19 increased in intensity. MALDI-TOF MS was used to generate tryptic peptide masses that were submitted to Mascot for identification. Of the differentially expressed proteins, 12% matched with hypothetical proteins, 33% did not hit any protein, and for the 55%, a putative function was assigned based on similarity of sequences with previously characterized proteins. Therefore, pollen tube development can be characterized by the cellular activities that involve metabolism, stress/defense response, gene regulation, signal transduction, and cell wall formation. This study expands our understanding of the changes in protein expression associated with pollen tube development and provides insights into the molecular programs that separate the development of the pollen tubes from pollen grains. This is the first report that describes a global analysis of differentially expressed proteins from the pollen tube of any seed plant.  相似文献   

4.
5.
One of the rare weak points of the model plant Arabidopsis is the technical problem associated with the germination of its male gametophyte and the generation of the pollen tube in vitro. Arabidopsis pollen being tricellular has a notoriously low in vitro germination compared to species with bicellular pollen. This drawback strongly affects the reproducibility of experiments based on this cellular system. Together with the fact that pollen collection from this species is tedious, these are obstacles for the standard use of Arabidopsis pollen for experiments that require high numbers of pollen tubes and for which the percentage of germination needs to be highly reproducible. The possibility of freeze-storing pollen after bulk collection is a potential way to solve these problems, but necessitates methods that ensure continued viability and reproducible capacity to germinate. Our objective was the optimization of germination conditions for Arabidopsis pollen that had been freeze-stored. We optimized the concentrations of various media components conventionally used for in vitro pollen germination. We found that in general 4 mM calcium, 1.62 mM boric acid, 1 mM potassium, 1 mM magnesium, 18% sucrose at pH 7 and a temperature of 22.5°C are required for optimal pollen germination. However, different experimental setups may deviate in their requirements from this general protocol. We suggest how to optimally use these optimized methods for different practical experiments ranging from morphological observations of pollen tubes in optical and electron microscopy to their bulk use for molecular and biochemical analyses or for experimental setups for which a specific medium stiffness is critical. F. Bou Daher and Y. Chebli contributed equally to this study.  相似文献   

6.
Compared with pollen tubes of conifers, gnetophytes, and angiosperms, the pollen tube of cycads is exclusively a vegetative structure, uninvolved with the siphonogamous conduction of sperm to an egg. The cycad pollen tube appears to function primarily to obtain nutrients for the extensive growth and development of the male gametophyte. Previous workers have suggested that, similar to an haustorial fungus, the cycad pollen tube penetrates the reproductive tissues of the sporophyte by enzymatically destroying nucellar cells. These earlier studies did not document the precise structural relationship between the growing male gametophyte and its “host” tissue, the nucellus. Pollen tube growth, and its relation to the nucellus, was examined in Zamia furfuracea with light and transmission electron microscopy. Following germination, the pollen tube of Zamia furfuracea grows intercellularly through the subepidermal layers of the micropylar apex of the nucellus. Electron micrographs clearly show additional localized outgrowths of the pollen tube penetrating the walls of individual nucellar cells. Intracellular haustorial growth ultimately leads to the complete destruction of each penetrated cell, and appears to induce the degeneration of proximal unpenetrated nucellar cells. This pattern of intracellular penetration of the sporophyte by the male gametophyte in Zamia furfuracea is fundamentally different from what has been described in any other major group of seed plants (where intercellular growth of the male gametophyte is the rule), and suggests that the heterotrophic and tissue-specific relationships that male gametophytes of seed plants have with their host sporophytes are substantially more diverse than had previously been known.  相似文献   

7.
Pollen and pistil in the progamic phase   总被引:6,自引:0,他引:6  
The progamic phase, the period of pollen tube growth through the pistil, is a period of specific interactions between the male gametophyte and the pistil. Understanding of pollen germination and pollen tube growth are relevant for the study of pollen-pistil interactions and for understanding the function of components specifically accumulated in the transmitting tissue cell walls and intercellular matrix that may interact with pollen tubes. Received: 18 January 2001 / Accepted: 19 June 2001  相似文献   

8.
Recently several DNA-binding fluotochromes have been used for demonstrating pollennuclei. However, the autofluorescence of pollen wall often obscured the fluorescence of nuclei, thus limited the use of this method. Methyl salicylate (MS) as a clearing agent has shownexcellent effect for observing embryo sac in whole-mounted ovules. This aroused me to trya combination of fluorescent staining with MS clearing in orded to make a better demonstration of the pollen nuclei. Mature 2-celled or 3-celled pollen of several angiosperm species stained with Hoechst 33258(H33258) and cleared (via ethanol dehydration) with MS showed clearcut fluorescence oftheir generative or sperm nuclei and vegetative nucleus. MS greatly decreased the wall fluorescence and increased the transparency of the pollen contents, meanwhile maintained the H33258stained fluorescence, consequently made the nuclei brighter under a darkened background. For example, in sunflower pollen a pair of elongated and winding sperm nuclei whichcould not be identified after simple H33258 staining were quite visible after MS clearing, inartificially germinated pollen tubes, the locomotion of nuclei from pollen grain into the tube,the sequence of generative and vegetative nucle travelling along the tube and the division of generative nucleus into two sperm nuclei could be well followed by this method. The present technique may be adoptable for observations on the processes of microsporogenesis and male gametophyte development, and rogenesis in cultured anthers, and also possiblyfor tracing the nuclear events during pollination-fertilization.  相似文献   

9.
Gametophytic pollen tube guidance   总被引:1,自引:0,他引:1  
The concept of a pollen tube attractant was proposed in the late nineteenth century when pollen tubes were found to grow toward excised pistil tissues on medium. Since then, for about 140 years, plant biologists have tried to identify the pollen tube attractants. However, no molecule has been convincingly demonstrated to be the true attractant that actually controls the navigation of pollen tubes in the pistil. The past decade has seen substantial progress in this field in terms of our understanding of the various mechanisms of pollen tube guidance. It was suggested that diffusible pollen tube attractants might provide localized signals that affect the directional growth of the pollen tube, especially in the last phase of guidance by the target female gametophyte. Here, we review the mechanisms of pollen tube guidance, with special focus on the gametophytic guidance and the attractant. The necessary and appropriate conditions required by the true attractant will be discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes.  相似文献   

11.
In flowering plants, the growth of pollen tubes is essential for the delivery of sperm to the egg cells. Although many factors (including cell‐wall properties) are involved in this process, little is known about the underlying molecular mechanisms that regulate the growth of pollen tubes. We report here the characterization of an Arabidopsis mutant male gametophyte defective 4 (mgp4) that is severely defective in pollen tube growth. The mgp4 mutation also impairs root growth of pollen‐rescued mgp4 mutant plants generated by expressing MGP4 cDNA under the control of a pollen grain/tube‐specific promoter. The MGP4 gene encodes a putative xylosyltransferase and is expressed in many organs/tissues, including pollen tubes and roots. MGP4 protein expressed in Pichia pastoris exhibited xylosyltransferase activity and transferred d ‐xylose onto l ‐fucose. The pectic polysaccharide rhamnogalacturonan II (RG‐II), isolated from 7‐day‐old pollen‐rescued mutant seedlings, exhibited a 30% reduction in 2‐O‐methyl d ‐xylose residues. Furthermore, an exogenous supply of boric acid enhanced RG‐II dimer formation and partially restored the root growth of the pollen‐rescued mutant seedlings. Taken together, these results suggest that MGP4 plays important roles in pollen tube and root growth by acting as a xylosyltransferase involved in the biosynthesis of pectic RG‐II.  相似文献   

12.
In ovules of Pinus densiflora, pollen tubes elongate and branch into the nucellar tissue in the direction of the female gametophyte. After pollination, nucellar cells located around the pollen grain and tube die off. We showed here that the nuclei of the nucellar cells were stained by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling). The number of TUNEL-positive cells increased during pollen tube growth. The tips of pollen tube branches protruded into the nucellar cells to form a convex–concave junction. At this junction, the cell membrane of nucellar cells was separated from the cell wall and the protoplast shrank. Small vesicles and amorphous materials were released from the protoplast into the space between the cell membrane and wall. Vacuoles were collapsed, chromatin was condensed, and mitochondria and plastids were deteriorated in the shrunken protoplast. Agarose gel analysis of DNA isolated from the ovules showed a DNA ladder, suggesting that the nuclear DNA had undergone internucleosomal cleavage. These results suggest that nucellar cells undergo programmed cell death in response to pollen tube penetration with some features resembling apoptosis and other features peculiar to nucellar cells. Received: April 13, 2001 / Accepted: December 10, 2001  相似文献   

13.
Qin Y  Chen D  Zhao J 《Protoplasma》2007,231(1-2):43-53
Summary. Western blot analysis indicated the presence of two epitopes recognized by the anti-arabinogalactan protein antibodies JIM13 and LM2 and the absence of the JIM4 epitope in mature tobacco anthers. Immunoenzyme localization of arabinogalactan proteins (AGPs) with JIM13 showed that AGPs accumulate mainly at the early stages of anther development. AGP content and distribution were also investigated at the ultrastructural level in pollen tubes grown in vivo and in vitro. Abundant AGPs were present in the transmitting tissue of styles, and the AGP content of the extracellular matrix changed during pollen tube growth. In pollen tubes, immunogold particles were mainly distributed in the cell wall and cytoplasm, especially around the peripheral region of the generative-cell wall. β-D-Glucosyl Yariv reagent, which specifically binds to AGPs, caused slow growth of pollen tubes and reduced immunogold labeling of AGPs with JIM13 in vitro. These data suggest that AGPs participate in male gametogenesis and pollen tube growth and may be important surface molecules in generative and sperm cells. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

14.
 This study examines sporophytic and gametophytic vigor in wild and cultivated varieties of Cucurbita pepo L. and their hybrids in order to determine whether hybrid vigor extends to the microgametophyte generation. It also examines the variation in sporophytic and gametophytic vigor to discern the non-genetic influences of pollen provisioning by the sporophyte on pollen performance from the genetic influences of the microgametophyte’s own genotype on pollen performance. A cultivated and a wild C. pepo and their F1 and the F2 generations were grown under field conditions and flower and fruit production were monitored over one summer. We found that the four types of plants differed significantly in the number of male and female flowers and the number of fruits they produced. The F1 plants produced significantly more male flowers and marginally more female flowers and fruits than the parental lines. To estimate gametophytic vigor pollen was germinated in vitro and pollen tube length measured after 30 min. We found that pollen tubes from the F1 plants had significantly greater growth than tubes from the parental lines or the F2 generation, indicating that hybrid vigor extends to the microgametophytic generation. By partitioning the variance of pollen tube growth into ’within’ and ’among’ plant components of variation, we were able to show that the genotype of the microgametophyte influences pollen performance in vitro, but that expression of hybrid vigor in the microgametophyte is likely to be due to an environmental effect related to provisioning of the pollen grains during development. Received: 16 April 1998 / Revision accepted: 18 August 1998  相似文献   

15.
Sexual reproduction in plants, unlike that of animals, requires the action of multicellular haploid gametophytes. The male gametophyte (pollen tube) is guided to a female gametophyte through diploid sporophytic cells in the pistil. While interactions between the pollen tube and diploid cells have been described, little is known about the intercellular recognition systems between the pollen tube and the female gametophyte. In particular, the mechanisms that enable only one pollen tube to interact with each female gametophyte, thereby preventing polysperm, are not understood. We isolated female gametophyte mutants named magatama (maa) from Arabidopsis thaliana by screening for siliques containing half the normal number of mature seeds. In maa1 and maa3 mutants, in which the development of the female gametophyte was delayed, pollen tube guidance was affected. Pollen tubes were directed to mutant female gametophytes, but they lost their way just before entering the micropyle and elongated in random directions. Moreover, the mutant female gametophytes attracted two pollen tubes at a high frequency. To explain the interaction between gametophytes, we propose a monogamy model in which a female gametophyte emits two attractants and prevents polyspermy. This prevention process by the female gametophyte could increase a plant's inclusive fitness by facilitating the fertilization of sibling female gametophytes. In addition, repulsion between pollen tubes might help prevent polyspermy. The reproductive isolations observed in interspecific crosses in Brassicaceae are also consistent with the monogamy model.  相似文献   

16.
17.
Summary There is evidence that male gametophyte selection is a widespread phenomenon in higher plants. The pollen tube growth rate is one of the main components of gametophyte selective value; genetic variability for this trait, due to the effect of single genes or to quantitative variation, has been described in maize. However, indication of gametophytic selection has been indirectly obtained; its effect was revealed by the positive relation observed between gametophyte competitive ability and sporophyte metrical traits.This paper considers the results of selection applied to gametophyte populations produced from single plants. The competitive ability of the lines was evaluated in comparison with that of a standard line by means of the pollen mixture technique. Sporophytic traits were measured in the hybrid progeny obtained by crossing selected S3 and S4 families with an unrelated single cross and an inbred line. Gametophyte selection produced inbred lines with high gametophyte competitive ability. In view of the selection procedure adopted, this result was interpreted as an indication of haploid expression of genes involved in the control of pollen tube growth. Moreover, this gametophytic trait was positively correlated with sporophytic traits (seedling weight, kernel weight and root tip growth in vitro), indicating that both groups of characters have a common genetic basis.  相似文献   

18.
Despite the vital role that flavonols play in fertilization and pollen tube growth of a number of species such as petunia and maize, their function is still unclear. Pollen tubes of the flavonol-deficient transformant T17.02 of Petunia hybrida L. are able to germinate and start growing in vitro, but eventually disrupt at the tip approximately 2 h after germination. In order to establish the possible role of flavonols in this process, wild-type and flavonol-deficient pollen tubes were subjected to cytological and ultrastructural analyses and screened for differences. The results showed that before disruption of the flavonol-deficient pollen tubes, the structure of the primary wall at the tip dramatically changed from layered to granular. Secretory vesicles at the tip still fused with the wall but lost their capacity to melt into the wall and to form layers. Instead they remained as dark, electron-dense granular structures surrounded by an electron-translucent matrix. Apparently the matrix is not able to sustain the wall's coherence and as a consequence the tube disrupts. No other remarkable cytological or ultrastructural differences between the transformant and the wild-type pollen tubes could be found before tip disruption. Even a morphometric analysis of abundance and distribution of endoplasmic reticulum, dictyosomes and mitochondria did not reveal any significant difference. However, for the first time, obvious morphological differences were observed in the wall of the flavonol-deficient pollen tubes. We conclude that flavonols act on precursors of the pollen tube wall of petunia and interfere with a cross-linking system in the wall, possibly via extensins. Received: 23 February 1998 / Accepted: 13 August 1998  相似文献   

19.
The differentiation and development of ovules in orchid flowers are pollination dependent. To define the developmental signals and timing of critical events associated with ovule differentiation, we have examined factors that regulate the initial events in megasporogenesis and female gametophyte development and characterized its progression toward maturity and fertilization. Two days after pollination, ovary wall epidermal cells begin to elongate and form hair cells; this is the earliest visible morphological change, and it occurs at least 3 days prior to pollen germination, indicating that signals associated with pollination itself trigger these early events. The effects of inhibitors of ethylene biosynthesis on early morphological changes indicated that ethylene, in the presence of auxin, is required to initiate ovary development and, indirectly, subsequent ovule differentiation. Surprisingly, pollen germination and growth were also strongly inhibited by inhibitors of ethylene biosynthesis, indicating that male gametophyte development is also regulated by ethylene. Detailed characterization of the development of both the female and male gametophyte in pollinated orchid flowers indicated that pollen tubes entered the ovary and grew along the ovary wall for 10 to 35 days, at which time growth was arrested. Approximately 40 days after pollination, coincident with ovule differentiation as indicated by the presence of a single archesporial cell, the direction of pollen tube growth became redirected toward the ovule, suggesting a chemical signaling between the developing ovule and male gametophyte. Taken together, these results indicate that both auxin and ethylene contribute to the regulation of both ovary and ovule development and to the coordination of development of male and female gametophytes.  相似文献   

20.
Fast pollen tube growth in Conospermum species   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: An unusual form of pollen tube growth was observed for several Conospermum species (family Proteaceae). The rate of pollen tube growth, the number of tubes to emerge and the ultrastructure of these tubes are given here. METHODS: Pollen was germinated in vitro in different sucrose concentrations and in the presence of calcium channel blockers, and tube emergence and growth were recorded on a VCR. Measurements were taken of the number of tubes to emerge and rate of tube emergence. Pollen behaviour in vivo was also observed. The ultrastructure of germinated and ungerminated pollen was observed using TEM. RESULTS: After 10 s to 3 min in germination medium, up to three pollen tubes emerged and grew at rates of up to 55 micro m s(-1); the rate then slowed to around 2 micro m s(-1), 30 s after the initial growth spurt. Tubes were observed to grow in pulses, and the pulsed growth continued in the presence of calcium channel blockers. Optimal sugar concentration for pollen germination was 300 g L(-1), in which up to 81 % of pollen grains showed fast germination. Germination and emergence of multiple tubes were observed in sucrose concentrations of 100-800 g L(-1). The vegetative and generative nuclei moved into one of the tubes. Multiple tubes from a single grain were observed on the stigma. Under light microscopy, the cytoplasm in the tube showed a clear region at the tip. The ultrastructure of C. amoenum pollen showed a bilayered exine, with the intine being very thick at the pores, and elsewhere having large intrusions into the plasma membrane. The cytoplasm was dense with vesicles packed with inner tube cell wall material. Golgi apparatus producing secretory vesicles, and mitochondria were found throughout the tube. The tube wall was bilayered; both layers being fibrous and loosely packed. CONCLUSIONS: It is proposed that, for Conospermum, initial pollen tube wall constituents are manufactured and stored prior to pollen germination, and that tube extension occurs as described in the literature for other species, but at an exceptionally fast rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号