首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apertural inner layer (intine) of Euphorbia L. pollen grains has a characteristic but original structure that has paired thickenings, one on either side of the colpus. To determine the nature and role of this intine layer, pollen grains of Euphorbia peplus L. were germinated in vivo and in vitro. The germination process involves wall changes that facilitate formation of the pollen tube and its subsequent growth. In the thickenings of the intine of E. peplus, the unesterified pectin epitopes are more densely localised in the inner part of the middle intine. No such epitopes are located in the intine portion adjacent to the plasma membrane (cellulosic endintine). Unesterified pectin epitopes are also localised in the outer part of the intine but are restricted to the centre of the aperture, around and in the pore. The de-esterification of pectins is very advanced at the time of dehiscence and pollen germination. The stratification of the aperture intine may take the following pathway at the time of germination: the thin outer zone of the intine in the pore region becomes disorganised and undergoes dissolution with liberation of unesterified and esterified pectins; the middle intine thickenings undergo an important elastic modification, but without liberation of unesterified pectins; the cellulosic inner intine is the progenitor of the pollen tube wall. This special intine of E. peplus is an adaptation to the hydration process preceding germination, increasing intine and pollen grain wall elasticity.  相似文献   

2.
The distribution of cellulose and callose in the walls of pollen tubes and grains of Nicotiana tabacum L. was examined by electron microscopy using gold-labelled cellobiohydrolase for cellulose and a (1,3)-β-D-glucan-specific monoclonal antibody for callose. These probes provided the first direct evidence that cellulose co-locates with callose in the inner, electron-lucent layer of the pollen-tube wall, while both polymers are absent from the outer, fibrillar layer. Neither cellulose nor callose are present in the wall at the pollen-tube tip or in cytoplasmic vesicles. Cellulose is first detected approximately 5–15 μm behind the growing tube tip, just before a visible inner wall layer commences, whereas callose is first observed in the inner wall layer approximately 30 μm behind the tip. Callose was present throughout transverse plugs, whereas cellulose was most abundant towards the outer regions of these plugs. This same distribution of cellulose and callose was also observed in pollen-tube walls of N. alata Link et Otto, Brassica campestris L. and Lilium longiflorum Thunb. In pollen grains of N. tabacum, cellulose is present in the intine layer of the wall throughout germination, but no callose is present. Callose appears in grains by 4 h after germination, increasing in amount over at least the first 18 h, and is located at the interface between the intine and the plasma membrane. This differential distribution of cellulose and callose in both pollen tubes and grains has implications for the nature of the β-glucan biosynthetic machinery. Received: 20 February 1988 / Accepted: 25 March 1998  相似文献   

3.
鹅掌楸属植物花粉萌发前后壁的超微结构   总被引:1,自引:0,他引:1  
观察描述了在电镜下中国鹅掌楸(Liriodendronchinense)和北美鹅掌楸(L.tulipifera)2种植物花粉壁的超微结构及其水合后的变化。(1)成熟花粉壁由6层组成,即外壁3层──外层,中层1和中层2,内壁3层──内壁1,内壁2和内壁3。(2)花粉水合时,在内壁3与质膜之间由P一粒子(多糖-粒子)和被膜小泡参与形成新层。(3)花粉萌发时,由内壁3的一部分和新层突出萌发孔共同形成花粉管壁。(4)新层于花粉管形成早期分成2层──外染色深的果胶层和内电子透明的胼胝质层。  相似文献   

4.
This last portion of our developmental study ofPinus sylvestris L. pollen grains extends from just prior to the first microspore mitosis to the microsporangial dehiscence preparatory to pollen shedding. In nine years of collecting each day the duration of the above period was 7 to 11 days. Tapetal cells extended into the loculus and embraced microspores during the initial part of the above period. Thereafter tapetal cells receded, became parallel to parietal cells and so imbricated that there appeared to be two or three layers of tapetal cells. Tapetal cells were present up to the day before pollen shedding, but only rER and some mitochondria appeared to be in good condition at that time. A callosic layer (outer intine) was initiated under the endexine before microspore mitosis. After the first mitosis the first prothallial cell migrated to the proximal wall and was covered on the side next to the pollen cytoplasm by a thin wall joining the thick outer intine. There are plasmodesmata between pollen cytoplasm and the prothallial cell. After the second mitosis the second prothallial cell became enveloped by the outer intine. The inner intine appears after formation of the two prothallial cells but before the third mitosis. During this two-prothallial cell period before the third mitosis, plastids had large and complex fibrillar assemblies shown to be modified starch grains. After the third mitosis plastids of the pollen cytoplasm contained starch and the generative cell (antheridial initial), the product of that mitosis, is enveloped by the inner intine. On the day of pollen shedding cells are removed from the microsporangial wall by what appears to be focal autolysis. The tapetal and endothecial cells for 10–15 µm on each side of the dehiscence slit are completely removed. One or more epidermal cells are lysed, but both a thin cuticle and the very thin sporopollenin-containing peritapetal membrane remain attached to the undamaged epidermal cells bordering the dehiscence slit. Our study terminates on the day of pollen shedding with mature pollen still within the open microsporangium. At that time there is no longer a clear morphological distinction between the outer and inner intine but, judging by stain reactions, there is a chemical difference. The exine of shed pollen grains was found to be covered by small spinules on the inner surface of alveoli. These had the same spacing as the Sporopollenin Acceptor Particles (SAPs) associated with exine initiation and growth.  相似文献   

5.
The pollen wall of Canna generalis Bailey is exceptionally thick, but only a minor part of it contains detectable amounts of sporopollenin. The sporopollenin is in isolated spinules at the exine surface and in the intine near the plasma membrane. There is no sporopollenin in the > 10 μ thick channeled region between spinules and intine. We suggest that the entire pollen wall of C. generalis is similar to the thick intine and thin exine typical for germinal apertures in many pollen grain types. Considered functionally, the Canna pollen wall may offer an infinite number of sites for pollen tube initiation and would differ significantly from grains that are inaperturate in the sense of an exine lacking definite germinal apertures.  相似文献   

6.
The air disturbance patterns created by and around the ovules of Taxus cuspidata are quantified for various orientations to the direction of ambient airflow, and are shown to largely dictate the motion (vectoral trajectories) and mode of deposition of windborne pollen on ovule surfaces. Perpendicular orientation to the direction of airflow results in two regions characterized by high densities of adhering pollen — one on the windward surface of the ovule, resulting from direct inertial collision, and another on the leeward surface resulting from non-inertial sedimentation. Parallel and inclined orientations of the ovule to the direction of airflow produce quantitative and qualitative variations in the pattern of adhering pollen resulting from inertial and non-inertial deposition. Direct collision of windborne pollen grains with the micropylar ends of ovules occurs for all orientations to wind direction. The aerodynamics of the ovulate shoot complex of Taxus cuspidata is related to that previously described for conifer ovulate cones, cycad megastrobili, and simulated wind tunnel analyses of archaic Paleozoic ovules based on scale models. Water transport of pollen (adhering to integument and bract surfaces) to micropyles quantitatively alters the distribution of adhering pollen grains on ovule surfaces. Although there is no evidence that pollen grains of this species are osmotically ruptured, observations do not preclude the possibility that water transport of pollen may reduce the number of viable pollen grains reaching the micropyle.  相似文献   

7.
The influence of the sequence of maternal tissue development in Betula pendula upon the potential for male gamete selection was investigated, and the timing of the fixed abortion of one of the two ovules was determined. We used scanning electronic microscopy, confocal laser scanning microscopy, and blue light microscopy. The stigmas remain fresh throughout male anthesis, and may also last after its end, depending on ambient temperatures. The presence of germinated pollen does not induce stigmatic necrotization, and grains may arrive at different times. The pollen tube tips remain within the stigma base until the end of female anthesis. The ovules will not develop until after necrotization of the stigmas. The pollen tubes thus have a fair start to the ovules, regardless of their different arrival times and of the original positions of the pollen grains at the stigma surface. Therefore, competition among different microgametophytes is possible, in spite of low pollination intensity. Our results indicate that when the first pollen tube penetrates an ovule, this ovule starts to outgrow the other one, and even if the other is also penetrated, its vascular support soon atrophies and the megagametophyte will shrivel. Fertilization of both ovules was never seen in this study.  相似文献   

8.
云南松花粉形态研究   总被引:3,自引:0,他引:3  
在云南松(Pinus yunnanensis Fr.)小孢子发生发育过程中,花粉母细胞、四分孢子及花粉粒均见有粘连现象。花粉气囊的形态、大小变化复杂多样。除一般具两个正常气囊的花粉粒外,还观察到气囊不发育、具一个气囊、二个异形气囊、三个气囊和四个气囊的花粉粒。成熟花粉壁从外至内可分为外壁外层、外壁内层、内壁外层和内壁内层,它们的构成成分及形态均有明显差别。贮存后花粉的内壁结构发生了明显变化。  相似文献   

9.
Summary In the mature microspore ofSecale cereale, a set of wall ingrowths deposited as the first (outer) intine layer between exine and the microspore plasma membrane, are revealed by electron microscopy. The wall ingrowths form a girdle in the vicinity of the apertural region at the external pole of microspore which is in contact with the tapetum, so the microspore can be considered as a transfer cell which is polarized. After microspore division the second (inner) intine layer is deposited by the vegetative cell and forms a labyrinth of branched wall ingrowths. As a result, the periphery of a vegetative cell is also irregular and appears as very thin plasmatubules or evaginations delimited by plasma membrane and penetrating the pollen wall.The possible functions of the microspore as a transfer cell and the wall-membrane system of the vegetative cell are discussed.  相似文献   

10.
Field pea (Pisum sativum), a major grain legume crop, is autogamous and adapted to temperate climates. The objectives of this study were to investigate effects of high temperature stress on stamen chemical composition, anther dehiscence, pollen viability, pollen interactions with pistil and ovules, and ovule growth and viability. Two cultivars (“CDC Golden” and “CDC Sage”) were exposed to 24/18°C (day/night) continually or to 35/18°C for 4 or 7 days. Heat stress altered stamen chemical composition, with lipid composition of “CDC Sage” being more stable compared with “CDC Golden.” Heat stress reduced pollen viability and the proportion of ovules that received a pollen tube. After 4 days at 35°C, pollen viability in flower buds decreased in “CDC Golden,” but not in “CDC Sage.” After 7 days, partial to full failure of anthers to dehisce resulted in subnormal pollen loads on stigmas. Although growth (ovule size) of fertilized ovules was stimulated by 35°C, heat stress tended to decrease ovule viability. Pollen appears susceptible to stress, but not many grains are needed for successful fertilization. Ovule fertilization and embryos are less susceptible to heat, but further research is warranted to link the exact degree of resilience to stress intensity.  相似文献   

11.
Pollen grains of Montrichardia are inaperturate with psilate ornamentation. The pollen wall is formed by a thin ectexine and an extraordinarily thick intine. In living as well as in dead pollen grains contact with water leads to a rapid swelling of the intine followed by an explosive opening of the exine. Within a few seconds a thick tube is formed, which is not the pollen tube. The pollen protoplast is situated at the tip of the tube. These intine tubes are interpreted as pollen connecting tools to keep pollen grains together and adhere them to the cuticle of the hairless pollinators.  相似文献   

12.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

13.
Summary In vitro penetration of the micropyle of freshly isolatedGasteria verrucosa ovules by pollen tube was monitored on agar medium. 40–60% of the micropyles were penetrated, comparable with in vivo penetration percentages. When germinated on agar,Gasteria pollen tube elongation lasts for up to 8 h while plasma streaming continues for about 20–24 h. The generative cell divides between 7 and 20 h after germination, and after 20 h the pollen tube arrives at one of the synergids. The sperm cells arrive after 22 h. The whole process takes more time in vitro than in vivo. In fast growing pollen tubes, a pulsed telescope-like growth pattern of tube elongation is observed. The formation of pollen tube wall material precedes tube elongation and probably prevents regular enlargement of the pollen tube tip-zone. Rapid stretching of the new pollen tube wall material follows, probably due to gradually increased osmotic pressure and the use of lateral wall material below the tip. The stretching ceases when the supplies of plasma membrane and excretable wall material are exhausted. Multiple pollen tube penetration of the micropyle occurs in vitro as it does in vivo. Most pollen tube growth ceases within the micropyle but, if it continues, the pollen tubes curl. Inside the micropyle the pollen tube shows haustorial growth. At the ultrastructural level, the wall thickening of in vitro pollen tubes is quite similar to that in vivo. Before transfer of pollen tube cytoplasm a small tube penetrates one of the synergids. Sperm nuclei with condensed chromatin are observed in the pollen tube and the synergid. In vivo prometaphase nuclei are found in the most chalazal part of a synergid, against the egg cell nucleus and nucleus of the central cell at a later stage. Using media forLilium ovule culture,Gasteria ovules were kept alive for at least 6 weeks. Swelling of the ovule depends on pollen tube penetration. The conditions for fertilization to occur after in vitro ovular pollination seem to be present.  相似文献   

14.
The pollen-specific promoter of the LAT52 gene is known to direct expression of marker proteins during the last stages of pollen maturation and in very early pollen tube growth.We have examined the expression of LAT52-GUS during later stages of pollen tube growth in style and ovary of the relatively long-styled species Nicotiana alata. GUS activity was detected histochemically and found to be present in germinating pollen grains of N. alata and in tubes growing through the upper part of the style. No GUS activity was detected in 99% of the pollen tubes growing through the lower part of the style, but activity was present in tubes within the ovary. This finding indicates that the LAT52 promoter is regulated in growing pollen tubes, and is most active during the earliest and latest stages of pollen tube growth. GUS activity was also detected in some ovules, where it presumably marked the release of pollen tube cytoplasm into the ovule. The distribution of ovules with GUS activity within the ovary is not consistent with high-precision pollen tube guidance to the ovule. Received: 16 August 1999 / Revision accepted: 20 December 1999  相似文献   

15.
The development of microspores/pollen grains and tapetum was studied in fertile Rosmarinus officinalis L. (Lamiaceae). Most parts of the cell walls of the secretory anther tapetum undergo modifications before and during meiosis: the inner tangential and radial cell walls, and often also the outer tangential and radial wall, acquire a fibrous appearance; these walls become later transformed into a thin poly-saccharidic film, which is finally dissolved after microspore mitosis. Electron opaque granules found within the fibrous/lamellated tapetal walls consist of sporopollenin-like material, but cannot be interpreted as Ubisch bodies. The middle lamella and the primary wall of the outer tangential and radial tapetal walls remain unmodified, but get covered by an electron opaque, sporopollenin-like layer. Pollenkitt is formed only by lipid droplets from the ground plasma and/or ER profiles, the plastids do not form pollenkitt precursor lipids. Tapetum maturation (“degeneration”) does not take place before late vacuolate stage.

The apertures are determined during meiosis by vesicles or membrane stacks on the surface of the plasma membrane. The procolumellae are conical, but at maturity the columellae are more cylindrical in shape. The columellar bases often fuse, but a genuine foot layer is lacking. The formation of the endexine starts with sporopollenin-accumulating white lines adjacent to the columellar bases. Later, the endexine grows more irregularly by the accumulation of sporopollenin globules. In mature pollen the intine is clearly bilayered.

Generative cells (GCs) and sperm cells contain a comparatively large amount of cytoplasm, and organelles like mitochondria, dictyosomes, ER, and multi-vesicular bodies, but no plastids; GCs and sperms are separated from the vegetative cell only by two plasma membranes.  相似文献   

16.
The structure of the pollen of 42 species of Pseuduvaria (Annonaceae) is described. The pollen is consistently inaperturate, isopolar and radially symmetrical. Four basic patterns of exine sculpturing are identified: rugulate, verrucate, scabrate and psilate. The exine stratification of one representative species, P. macrocarpa , is shown to be entirely ectexinal. The ectexine consists of a discontinuous outer tectal layer, a columellar infratectal layer, and an inner lamellar foliated foot layer; the intine is very thin and fibrillar. The pollen is invariably released as acalymmate tetrads, in which the tectum is absent from the proximal walls. The individual pollen grains within the tetrads are connected by crosswall cohesion, involving both exine and intine; this form of cohesion has not hitherto been reported in the Annonaceae. In addition, pollen grains of neighbouring tetrads are connected in two different ways, viz. short exine connections and non-sporopollenin pollen-connecting threads. Neither of these cohesion mechanisms has previously been reported for the genus. The function of the various forms of cohesion between pollen grains and tetrads in Pseuduvaria is discussed as a mechanism to enhance the efficiency of pollination by enabling the fertilization of multiple ovules following a single pollinator visit.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 69−78.  相似文献   

17.
F. B. Sampson 《Grana》2013,52(5):257-265
Pollen morphology and ultrastructure of Laurelia novae-zelandiae A. Cunn., L. sempervirens (Ruiz et Pavón) Tulasne, Laureliopsis-philippiana (Looser) Schodde and Dryadodaphne trachyphloia Schodde are described. Laurelia, Laureliopsis and Dryadodaphne have medium-sized, isopolar, globose to globose-ellipsoidal pollen which is either dicolpate (Dryadodaphne, rarely in Laureliopsis) or meridionosulcate, with a median encircling aperture with two wider parts centered at the poles (Laurelia, most pollen of Laureliopsis). Exine is tectate-columellate with an uneven foot layer showing irregular discontinuities. A few tangentially-aligned lamellae show some resemblance to an endexine and in some sections there appears to be an intergradation between these lamellae and small tangentially flattened foot layer parts. The intine consists of an outer channelled zone, with radial (Laurelia sempervirens) or tangential (Dryadodaphne) alignment of channels and an inner intine of homogeneous appearance. The outer intine is thicker in apertural regions and the inner intine is thicker within the apertures of Laureliopsis and Dryadodaphne. The pollen grains of 6 of the 7 genera of Atherospermataceae are compared in tabular form. Although pollen grains show links with other Monimiaceae (sensu lato), it is sufficiently distinct to support the existence of the Atherospermataceae as a separate family. It is acknowledged that, on other grounds, a good case can be made for retention of the group as a subfamily within the Monimiaceae.  相似文献   

18.
Pollination, fertilization and ovule abortion were studied in Oxalis magnifica (Rose) Knuth, a strongly self-incompatible herb that regularly matures only a fraction of its ovules. Examination of cleared ovules indicated that among 9 individuals the average number of ovules fertilized ranged from 48–92%. The remaining ovules either failed to produce female gametophytes, or more commonly contained unfertilized female gametophytes, despite large numbers of compatible pollen grains that were placed on stigmas. Abortion of fertlized ovules could be detected first by the flattened and enlarged appearance of the endosperm nuclei, followed by visible deterioration of the embryo. Among individuals the rate of embryo abortion varied from 3.4–47.9%. At lower levels of pollination an almost one-to-one relationship existed between the number of pollen grains placed on stigmas and the number of seeds matured in the capsule. No threshold number of pollen grains necessary for successful pollen tube growth and fertilization could be demonstrated. Reduction in seed number through embryo abortion provides an opportunity for selection among developing seeds. The potential for this form of selection varies widely among individuals of Oxalis magnifica, which showed a 14-fold variation in the average percentage of aborted ovules.  相似文献   

19.
Summary The mature pollen of Larix leptolepis Gord. (Conifer) contains five different cell types, and the plasma membrane of the vegetative cell is continuous and organized. The pollen wall is composed of two morphologically and cytochemically distinct domains: the exine and the intine. In the multilayered exine, the ektexine appears granular and the endexine, lamellar. The intine is thick and bilayered with a microfibrillar structure occupying its inner portion. Cytochemical reactions of the exine and the intine are similar to those found in angiosperms. Pollen wall involvement in the male female recognition system is discussed with respecl to the angiosperms.  相似文献   

20.
An important aspect of the evolution of carpel closure, or angiospermy, is the relationship between pollen tube growth patterns and internalization of the pollen‐tube pathway. True carpel closure, involving postgenital fusion of inner carpel margins, is inferred to have arisen once within the ancient order Nymphaeales, in the common ancestor of Nymphaeaceae. We studied pollen tube development, from pollination to fertilization, in a natural population of Nymphaea odorata, using hand pollinations and timed flower collections. Pollen germinates in stigmatic secretions within 15 min and pollen tubes enter subdermal transmitting tissue within an hour, following wide intercellular spaces towards the zone of postgenital fusion. At the zone of fusion they turn downwards to grow in narrow spaces between interlocked cells and then wander freely to ovules within ovarian secretions. The pollen‐tube pathway is 2–6 mm long and upper ovules are first penetrated 2.5 h after pollination. Pollen tubes grow at rates of approximately 1 mm/h whether in stigmatic fluid, transmitting tissues or ovarian secretions. Pollen‐tube pathways are structurally diverse across Nymphaeales, yet their pollen tubes have similar morphologies and rapid growth rates. This pattern suggests pollen tube growth innovations preceded and were essential for the evolution of complete carpel closure. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 581–593.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号