首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A phylogeny of Packera is presented based on sequence data from the internal transcribed spacer region of nuclear ribosomal DNA of 26 species (28 populations) of Packera and 23 outgroup taxa, including representatives of all three subtribes of the Senecioneae. The results support a Mexican origin for Packera, with its closest relatives found among Old World taxa in the subtribe Senecioninae, such as Senecio jacobaea and Pericallis. Packera species from the west coast of the United States, previously included in the section Bolanderi of Greenman, are part of a basal assemblage including species of Greenman's Mexican section Sanguisorboidei. The rest of Packera separates into two sister groups, one containing species from the Arizona-New Mexico region and the other containing more geographically diverse taxa. Among the outgroups, New World Senecio species are monophyletic and two Tussilaginoid assemblages are strongly supported; the Tephroseroid group (Tephroseris and Sinosenecio) plus Petasites combine with the Luina complex to form a clade of north temperate taxa, and the four Mexican genera (Psacalium, Robinsonecio, Barkleyanthus, and Pittocaulon) form a monophyletic group.  相似文献   

2.
The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically.  相似文献   

3.
The internal transcribed spacer (ITS) regions of 18S–25S nuclear ribosomal DNA from representatives of 23 species of the subtribeGentianinae and one outgroup species (Centaurium capitatum) were analyzed by polymerase chain reaction amplification and direct DNA sequencing. Within the taxa analyzed, the length of the ITS1 region varied from 221 to 233 bp, ITS2 from 226 to 234 bp. Of the aligned sequences of 497 positions, 151 sites involved gaps or nucleotide ambiguity, 133 were invariable and 213 showed divergence. In pairwise comparisons among the taxa of the subtribeGentianinae and the outgroup, sequence divergence ranged from 1.3% to 34.1% in ITS1, from 0 to 28.1% in ITS2 and from 0.6% to 27.5% in combined ITS1 and ITS2. Phylogenetic trees generated from ITS sequences were highly resolutive and principally concordant with morphological classifications for the major phylogenetic divisions in the subtribe. An ancient divergence leading to two evolutionary lines was suggested in the subtribe by both DNA sequence and morphological data. One line encompasses the generaGentiana, Crawfurdia andTripterospermum, morphologically characterized by their glands on the base of ovary and their plicate corolla, while the other line involves all other members of the subcribe surveyed, characterized by their epipetalous glands and simple corolla without plicae.Megacodon, with glands on the base of ovary but without plicae on its corolla, was revealed to be more related to the latter group than to the former.Comastoma, Gentianella andGentianopsis were shown to be well-defined monophyletic genera.Pterygocalyx showed much closer affinity toGentianopsis than to any other genus. Some conflictions were detected in the genusSwertia.  相似文献   

4.
This study represents a nuclear rDNA ITS-based phylogenetic analyses of a greater sampling of the Old WorldAstragalus compared to our previous work (212 vs. 134 taxa). Phylogenetic relationships among 212 species (213 accessions) of the Old WorldAstragalus, including newly segregated monotypic genusPodlechiella, the two aneuploid New WorldAstragalus, and five related genera, were inferred from analyses of nuclear rDNA ITS sequences using maximum parsimony. A total of 658 nucleotide sites and four binary characters for indels were analyzed. The results of phylogenetic analyses suggest sect.Phyllolobium, comprising mostly the Chinese species, is placed outside of the so-calledAstragalus s. str. and is a well-supported monophyletic group. The monotypic annual segregate genusThlaspidium (≡Astragalus sect.Thlaspidium, A. thlaspi), is clearly nested withinAstragalus s. str. Among the many sections analyzed here, only sects.Cenanthrum, Caraganella, Eremophysa, Incani, Laxiflori, andLotidium are strongly supported as monophyletic. Our analysis, in agreement with previous studies, shows that the North American euploidAstragalus species are scattered throughout the Old World groups of the genus.  相似文献   

5.
Phylogenetic relationships among 40 New World and Old World members of Apiaceae subfamily Apioideae, representing seven of the eight tribes and eight of the ten subtribes commonly recognized in the subfamily, were inferred from nucleotide sequence variation in the internal transcribed spacer (ITS) regions of 18-26S nuclear ribosomal DNA. Although the sequences are alignable, with only 11% of sites excluded from the analyses because of alignment ambiguity, divergence values in pairwise comparisons of unambiguous positions among all taxa were high and ranged from 0.5 to 33.2% of nucleotides in ITS 1 and from 0 to 33.2% of nucleotides in ITS 2. Average sequence divergence across both spacer regions was 18.4% of nucleotides. Phylogenies derived from ITS sequences estimated using neighbor-joining analysis of substitution rates, and maximum likelihood and parsimony methods give trees of essentially similar topology and indicate that: (1) there is little support for any existing system of classification of the subfamily that is based largely on morphological and anatomical features of the mericarp; (2) there is a major phylogenetic division within the subfamily, with one clade comprising the genus Smyrnium and those taxa belonging to Drude's tribes Dauceae, Scandiceae, and Laserpitieae and the other clade comprising all other examined taxa; and (3) the genera Arracacia, Coaxana, Coulterophytum, Enantiophylla, Myrrhidendron, Prionosciadium, and Rhodosciadium, all endemic to Mexico and Central America, comprise a clade but their relationships to other New World taxa are equivocal. A phylogeny derived from parsimony analysis of chloroplast DNA rpoC1 intron sequences is consistent with, but considerably less resolved than, relationships derived from these ITS regions. This study affirms that ITS sequences are useful for phylogenetic inference among closely related members of Apioideae but, owing to high rates of nucleotide substitution, are less useful in resolving relationships among the more ancestral nodes of the phylogeny.  相似文献   

6.
Nucleotide sequences of the plastidmatK gene and nuclear rDNA internal transcribed spacer region were sampled fromAstragalus L. (Fabaceae), and its closest relatives within tribe Galegeae, to infer phylogenetic relationships and estimate ages of diversification. Consistent with previous studies that emphasized sampling for nrDNA ITS primarily within either New World or Old World species groups,Astragalus, with the exception of a few morphologically distinct species, is strongly supported as monophyletic based on maximum parsimony and Bayesian analyses ofmatK sequences as well as a combined sequence dataset. ThematK data provides better resolution and stronger clade support for relationships amongAstragalus and traditionally related genera than nrDNA ITS.Astragalus sensu stricto plus the genusOxytropis are strongly supported as sister to a clade composed of strictly Old World (African, Australasian) genera such asColutea. Sutherlandia, Lessertia, Swainsona, andCarmichaelia, plus several morphologically distinct segregates of EurasianAstragalus. Ages of these clades and rates of nucleotide substitution estimated from a fossil-constrained, rate-smoothed, Bayesian analysis ofmatK sequences sampled from Hologalegina indicateAstragalus diverged from its sister group,Oxtropis, 12–16 Ma, with divergence of Neo-Astragalus beginning ca 4.4. Ma. Estimates of absolute rates of nucleotide substitution forAstragalus and sister groups, which range from 8.9 to 10.2×10−10 substitutions per site per year, are not unusual when compared to those estimated for other, mainly temperate groups of papilionoid legumes. The results of previously published work and other recent developments on the phylogenetic relationships and diversification ofAstragalus are reviewed.  相似文献   

7.
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross‐section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re‐analysis of published and newly generated plastid atpB‐rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).  相似文献   

8.
Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA from 44 taxa of the genus Lupinus and five outgroup taxa were used for phylogenetic analysis. Lupinus appears as a strongly supported monophyletic genus, which is unambiguously part of the Genisteae. The lupines are distributed into five main clades in general accordance with their geographical origin. In the Old World, almost all the recognized taxonomic units are well resolved. The ITS data reveal an unexpectedly close relationship between the diverse sections Angustifoli and Lutei. The ITS results suggest a geographical division between the western New World lupines and the eastern ones. They also indicate the presence of some moderately to strongly supported groups of taxa, such as the Microcarpi-Pusilli group, the L. spariflorus-L. arizonicus group, the L. mexicanus-L. elegans group in the western New World, and the notable L. multiflorus-L. paraguariensis group in the eastern New World. The latter group strongly suggests that the eastern South American compound- and simple-leaved perennial lupines derive from a common ancestor. However, apart from some exceptions, relationships within the genus still remain largely unresolved based on ITS data. The lack of resolution at the base of the genus is suggestive of a rapid initial radiation of the lupines subsequent to the dispersal of their common ancestor. Relative rate tests demonstrate the presence of rate heterogeneity of ITS sequences within Lupinus. In many pairwise comparisons between taxa, substitution rate inequalities are correlated with the habit (annual, perennial), suggesting some role for the generation time effects in the evolutionary history of lupines.  相似文献   

9.
Chloroplast DNA restriction site variation was examined for 35 taxa in theVernonieae and four outgroup tribes, using 17 restriction enzymes mapped for ca. 900 restriction sites per species; 139 mutations were found to be phylogenetically informative. Phylogenetic trees were constructed using Wagner and weighted parsimony, and evaluated by bootstrap and decay analyses. Relationships of Old and New World taxa indicate complex geographical relationships; there was no clear geographic separation by hemisphere. The relationships between Old and New World Vernonias found here support prior morphological analyses. The sister group to all New and most Old World taxa was composed of a small group of Old World species including yellow-flowered, trinervate-leaved species previously postulated to be basal in the tribe. The majority of both New and Old World taxa are derived from a lineage beginning with the monotypic genusStokesia, an endemic of the southeastern United States. The genusVernonia was also found to be paraphyletic within both the New and Old World. Available data do not support either the separation ofVernonia or the tribeVernonieae into geographically distinct lineages. The pattern of relationships within theVernonieae for taxa from North America, Asia, Africa, Central and South America is most similar to that of several other groups of both plants and animals with a boreotropical origin, rather than an origin in Gondwanaland. Such a pattern of distribution suggests more ancient vicariant events than are routinely postulated for theAsteraceae.  相似文献   

10.
Phylogenetic relationships within the complex genus Lupinus are estimated from internal transcribed spacer (ITS) sequences of the nuclear ribosomal DNA repeat. The molecular data supports Lupinus as a distinct monophyletic group within the tribe Genisteae. Different geographical lineages are revealed within Lupinus, which are each restricted to either the Old or the New World. In the New World, the ITS data support an eastern-western geographic disjunction of the lupines and the recognition of some well-supported clades. In the Old World, almost all the previously recognized taxa are taxonomically well differentiated. The homogeneous African rough-seeded lupines, Scabrispermae, are strongly supported as a monophyletic group, which is distinct from the diverse and heterogeneous circum-Mediterranean smooth-seeded ones. The latter appear to have evolved as two lineages, in which are revealed some intersectional relationships. Also ITS data allow the assessment of the phylogenetic position of the newly discovered species, L. anatolicus (in the Old World) and L. jaimehintoniana (the Mexican tree lupin). The ITS phylogeny suggests a rapid initial radiation of the lupines subsequent to their divergence from a common ancestor. Moreover, the results indicate that the annual and perennial habits have evolved many times in Lupinus and suggest a role for generation time in affecting the evolutionary history of lupines. Data on adaptive processes and character evolution are re-examined and discussed in the light of the ITS phylogeny.These studies were supported by the research unit UMR-CNRS 6553 Ecobio – University of Rennes (France), and by the NSERC of Canada (grant to R.J. Bayer, at the University of Alberta). They are greatfully acknowledged. All the persons that have contributed in different ways to this work on Lupinus, summarized in this presentation, are greatly thanked. Particularly, we would like to mention Malika Aïnouche, Roland Greinwald, André Huon, W.K. Swiecicki, Billie L. Turner and Ludger Witte for their contributions.  相似文献   

11.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

12.
This study reports maximum parsimony and Bayesian phylogenetic analyses of selected Old World Astragalus using two chloroplast fragments including trnL-F and ndhF and the nuclear ribosomal internal transcribed spacer (nrDNA ITS). A total of 52 taxa including 34 euploid Old World and New World Astragalus , one aneuploid species from the Neo-Astragalus clade as a representative and 14 other Astragalean taxa, plus Cheseneya astragalina and two species of Caragana as outgroups were analyzed for both trnL-F and nrDNA ITS regions. ndhF was analyzed in 30 taxa and the same number for the combination of these three datasets were examined. In general, the trnL-F dataset and the ndhF and nrDNA ITS datasets generated more or less the same clades within Astragalus . However, in the trnL-F and ndhF phylogenies, Astragalus species are not gathered in a single clade, the so-called Astragalus s.s., as indicated by the nrDNA ITS tree. Visual inspection of these three phylogenies revealed that they were inconsistent regarding the position and relationships of Astragalus hemsleyi , A. ophiocarpus , A. annularis–A. epiglottis / Astragalus pelecinus, A. echinatus and A. arizonicus . Incongruence length difference test suggested that the trnL-F , ndhF and nrDNA ITS datasets were incongruent. In spite of this, phylogenetic analyses of the combined datasets as one unit or as three partitions generated trees that were topologically similar as a mix of the cpDNA and the nrDNA ITS trees. However, the combined dataset provided more resolved and statistically supported clades. The recently described A. memoriosus appeared closely related to A. stocksii (both from sect. Caraganella ) based on both trnL-F and nrDNA ITS sequences.  相似文献   

13.
The genetic relationship of 36 Dendrobium species in China was determined based on sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA. Aligned sequences of the complete ITS region obtained from the 36 Dendrobium species and 2 outgroup species (Epigeneium amplum and Epigeneium nakaharaei) by using PCR amplification and direct DNA sequencing. The nrDNA ITS1 of Dendrobium was 225–234 bp and ITS2 was 239–248 bp. Phylogenetic tree was constructed, and seven main clusters were generated among the 36 Dendrobium species. From the results, D. moulmeinense was not grouped in the classification of Dendrobium and E. amplum and E. nakaharaei were shown to be divergent from Dendrobium species. The phylogenetic relationships revealed by ITS DNA analysis partially supported previously published morphological data.  相似文献   

14.
The first and second internal transcribed spacer (ITS1 and ITS2) regions of the ribosomal DNA from four species, Meretrix meretrix L., Cyclina sinensis G., Mercenaria mercenaria L., and Protothaca jedoensis L., belonging to the family Veneridae were amplified by PCR and sequenced. The size of the ITS1 PCR amplification product ranged from 663 bp to 978 bp, with GC contents ranging from 60.78% to 64.97%. The size of the ITS1 sequence ranged from 585 bp to 900 bp, which is the largest range reported thus far in bivalve species, with GC contents ranging from 61.03% to 65.62%. The size of the ITS2 PCR amplification product ranged from 513 bp to 644 bp, with GC contents ranging from 61.29% to 62.73%. The size of the ITS2 sequence ranged from 281 bp to 412 bp, with GC contents ranging from 65.21% to 67.87%. Extensive sequence variation and obvious length polymorphisms were noted for both regions in these species, and sequence similarity of ITS2 was higher than that of ITS1 across species. The complete sequences of 5.8S ribosomal RNA gene were obtained by assembling ITS1 and ITS2 sequences, and the sequence length in all species was 157 bp. The phylogenetic tree of Veneridae clams was reconstructed using ITS2-containing partial sequences of both 5.8S and 28S ribosomal DNA as markers and the corresponding sequence information in Arctica islandica as the outgroup. Tree topologies indicated that P. jedoensis shared a close relationship with M. mercenaria and C. sinensis, a distant relationship with other species.  相似文献   

15.
The 3′ region of the external transcribed spacer (ETS) of 18S–26S nuclear ribosomal DNA was sequenced in 19 representatives ofCalycadenia/Osmadeniaand two outgroup species (Compositae) to assess its utility for phylogeny reconstruction compared to rDNA internal transcribed spacer (ITS) data. Universal primers based on plant, fungal, and animal sequences were designed to amplify the intergenic spacer (IGS) and an angiosperm primer was constructed to sequence the 3′ end of the ETS in members of tribe Heliantheae. Based on these sequences, an internal ETS primer useful across Heliantheaesensu latowas designed to amplify and sequence directly the 3′ ETS region in the study taxa, which were the subjects of an earlier phylogenetic investigation based on ITS sequences. Size variation in the amplified ETS region varied across taxa of Heliantheaesensu latofrom approximately 350 to 700 bp, in part attributable to an approximately 200-bp tandem duplication in a common ancestor ofCalycadenia/Osmadenia.Phylogenetic analysis of the 200-bp subrepeats and examination of apomorphic changes in the duplicated region demonstrate that the subrepeats inCalycadenia/Osmadeniahave evolved divergently. Phylogenetic analyses of the entire amplified ETS region yielded a highly resolved strict consensus tree that is nearly identical in topology to the ITS tree, with strong bootstrap and decay support on most branches. Parsimony analyses of combined ETS and ITS data yielded a strict consensus tree that is better resolved and generally better supported than trees based on either data set analyzed separately. We calculated an approximately 1.3- to 2.4-fold higher rate of sequence evolution by nucleotide substitution in the ETS region studied than in ITS-1 + ITS-2. A similar disparity in the proportion of variable (1.3 ETS:1 ITS) and potentially informative (1.5 ETS:1 ITS) sites was observed for the ingroup. Levels of homoplasy are similar in the ETS and ITS data. We conclude that the ETS holds great promise for augmenting ITS data for phylogenetic studies of young lineages.  相似文献   

16.
Wang P  Lu Y  Zheng M  Rong T  Tang Q 《PloS one》2011,6(4):e16728
Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species.  相似文献   

17.
 The internal transcribed spacer (ITS) regions 1 and 2 of the ribosomal DNA from Stylosanthes guianensis CIAT 1283 and cv ‘Schofield’ were amplified by polymerase chain reaction using conserved ITS primers from the 18S, 5.8S and 26S ribosomal genes flanking those regions. The entire region of 683 bp long was cloned, and seven clones were sequenced. Comparison of the ITS spacer regions with published DNA sequences of other plant species revealed limited homology only; this was in contrast to their comparison with the 5.8S rDNA sequences. The ITS1 region of 45 S. guianensis accessions was amplified by PCR and sequenced on both strands using the conserved primers ITS2-ITS5. These sequences, ranging from 201 to 204 bp, were aligned to each other to assess intra-specific polymorphism. Within the S. guianensis (Aubl.) Sw. species complex, 11 DNA sequence types could be distinguished based on an insertion/deletion (indel) event and 15 single base-pair substitutions. In 1 of the S. guianensis types, two kinds of ITS1 sequence were observed in each individual, reminiscent of an incomplete homogenization of the repeat structure in this type. Polymorphisms in the sequence of the ITS1 region were used to define molecular markers for S. guianensis on the basis of PCR-restriction fragment length polymorphism and selective PCR. Received: 24 June 1997 / Accepted: 31 October 1997  相似文献   

18.
Lespedeza (tribe Desmodieae, Fabaceae) follows a disjunct distribution in eastern Asia and eastern North America. Phylogenetic relationships among its species and related taxa were inferred from nuclear ribosomal internal transcribed spacer (ITS) and plastid sequences (trnH‐psbA, psbK‐psbI, trnK‐matK and rpoC1). We examined 35 species of Lespedeza, two of Kummerowia and one of Campylotropis, the sole constituents of the Lespedeza group. An analysis of these data revealed that the genus Campylotropis is sister to the other two genera. However, we were unable to resolve the relationships between Kummerowia and Lespedeza in the strict consensus trees of parsimony analyses based on plastid and combined DNA data. In the genus Lespedeza, the Old World subgenus Macrolespedeza is monophyletic, whereas the transcontinental subgenus Lespedeza is paraphyletic. Monophyly of eastern Asian species and of North American species is strongly supported. Although inconsistent with the traditional classification, this phylogenetic finding is consistent with seedling morphology. Three subgroups recognized in subgenus Macrolespedeza were unresolved in our phylogenetic trees. An incongruence length difference (ILD) test indicated that the two partitions (nuclear ITS and plastid sequences) were significantly incongruent, perhaps because of hybridization between species in Lespedeza. Most of the primary clades of tribe Desmodieae are Asian, implying that the relatively few New World ones, such as those in Lespedeza, are more recently derived from Asia. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 221–235.  相似文献   

19.
A noteworthy wild lupine accession was recently discovered in southwestern Turkey and was proposed as a new separate Old World “smooth-seeded” species close toL. micranthus and namedL. anatolicus. Its species status was controversial with respect to cytological and crossability data. In order to examine the position and the evolutionary relationships of this Anatolian accession relative to the Old World lupines, we investigated new data from seed coat micromorphology, and from internal transcribed spacer (ITS) nucleotide sequences of the nuclear ribosomal DNA repeat. The micromorphological seed coat pattern ofL. anatolicus, as revealed by scanning electron microscopy, is characterized by pluricellular tubercles, which represent the typical and unique pattern of the Old World “rough-seeded” lupines (sect.Scabrispermae). In accordance with the micromorphological results, the genetic distances and phylogenetic relationships among the Old World lupines, estimated from ITS data, unambiguously support the new Anatolian lupine accession as part of theL. pilosus-L. palaestinus lineage within the strongly monophyletic group containing all theScabrispermae. The results provided in this study, together with other lines of data available from the literature, are thus hardly compatible with the hypothesis that this new Anatolian lupine accession could be related to Old World “smooth-seeded” lupines (includingL. micranthus); instead, it appears closely related toL. pilosus.  相似文献   

20.
The internal transcribed spacer region (ITS1 and ITS2) of the 18S-25S nuclear ribosomal DNA sequence and the intervening 5.8S region were sequenced from three individuals in each of eight taxa of the Mimulus guttatus species complex. Three discrete variants, or "types," of ITS sequences were found, among which 30%-40% of sites differed, compared with 1%-2% within types. Dot plots indicate that these types were not related by conspicuous rearrangements or inversions. More than one ITS type was often found in the same taxon, and two of three ITS types span species boundaries, indicating their presence prior to speciation. These ITS sequences showed essentially no positional homology with the nearest sequenced relative, tomato. In contrast, the 5.8S region was relatively unvaried, with 8 of 162 sites varied in the sample among all eight taxa. The phylogeny inferred by the most common ITS sequence type, rooted by the two other ITS types, agreed with isozymes in showing the distinctness of M. nudatus, M. laciniatus, and M. tilingii from the other five taxa.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号