首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial resistance of Pseudomonas aeruginosa biofilms   总被引:10,自引:0,他引:10  
Resistance to antimicrobial agents is the most important feature of biofilm infections. As a result, infections caused by bacterial biofilms are persistent and very difficult to eradicate. Although several mechanisms have been postulated to explain reduced susceptibility to antimicrobials in bacterial biofilms, it is becoming evident that biofilm resistance is multifactorial. The contribution of each of the different mechanisms involved in biofilm resistance is now beginning to emerge.  相似文献   

2.
3.
生物膜,也称为生物被膜,是指附着于有生命或无生命物体表面被细菌胞外大分子包裹的有组织的细菌群体。与浮游菌相比,生物膜内的细菌对抗生素的耐受性提高了10–1000倍,是造成目前细菌耐药的主要原因之一。作为一种新型抗菌制剂,抗菌肽的使用为生物膜感染的治疗提供了一种新的思路和手段。抗菌肽在抑制生物膜形成、杀灭生物膜内细菌以及消除成熟生物膜的过程中发挥了独特的优势。文中分析了近30年的数据,从细菌生物膜的结构入手,对抗菌肽可能的抗生物膜机理进行了综述,以期为抗菌肽临床治疗生物膜感染提供一定参考。  相似文献   

4.
The genomics and proteomics of biofilm formation   总被引:2,自引:0,他引:2  
Bacterial communities that are attached to a surface, so-called biofilms, and their inherent resistance to antimicrobial agents are a cause of many persistent and chronic bacterial infections. Recent genomic and proteomic studies have identified many of the genes and gene products differentially expressed during biofilm formation, revealing the complexity of this developmental process.  相似文献   

5.
The extensive use of antibiotics for the treatment of human infections during the last few decades has led to a dramatic increase in the emergence of multidrug-resistant bacteria (MDRB) among various bacterial strains. Global research is currently focused on finding novel alternative agents with different mechanisms of action rather than the use of conventional antibiotics to counteract the threat of bacterial and biofilm infections. Antimicrobial peptides represent promising alternative agents for conventional antibiotics as these molecules display a broad spectrum of activity against several microorganisms. Recently, we have designed a novel hybrid antimicrobial peptide named MelitAP-27. This peptide has been found to display potent broad spectrum and selective in vitro antimicrobial activities against a wide range of Gram-positive and Gram-negative bacteria. In the present study, the in vitro antimicrobial and antibiofilm activities of the peptide alone and in combination with five different types of antibiotics were assessed against wild-type and resistant Gram-positive and Gram-negative bacterial strains. Our results showed that most of the combination groups displayed a synergistic mode of action against planktonic and biofilm forming bacteria which resulted in decreasing the effective MIC values for MelitAP-27 to the nanomolar concentrations. These effective concentrations were associated with negligible toxicities on mammalian cells. The results of our study indicate that combinations of MelitAP-27 with conventional antibiotics may be pursued as a potential novel treatment strategy against MDRB and biofilm forming bacteria.  相似文献   

6.
Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion.  相似文献   

7.
Recent public announcements stated that 60% to 85% of all microbial infections involve biofilms developed on natural tissues (skin, mucosa, endothelial epithelia, teeth, bones) or artificial devices (central venous, peritoneal and urinary catheters, dental materials, cardiac valves, intrauterine contraceptive devices, contact lenses, different types of implants). Prosthetic medical devices are risk factors of chronic infections in developed countries and these infections are characterized by slow onset, middle intensity symptoms, chronic evolution and resistance to antibiotic treatment. In case of biofilm development, a series of genes (40-60% of the prokaryotic genome) are modulated (activated/inhibited) by complex cell to cell signalling mechanisms and the biofilm cells become phenotypically distinct from their counterpart--free cells, being more resistant to stress conditions (including all types of antimicrobial substances); this resistance is phenotypical, behavioural and, more recently, called TOLERANCE. Four major mechanisms can account for biofilm antibiotic tolerance: (1) the failure of antibiotic penetration into the depth of a mature biofilm due to the biofilm matrix; (2) the accumulation of high levels of antibiotic degrading enzymes; (3) in the depth of biofilm, cells are experiencing nutrient limitation entering in a slow-growing or starved state; slow-growing or non-growing cells being not highly susceptible to antimicrobial agents, this phenomenon could be amplified by the presence of phenotypic variants or "persisters" and (4) biofilm's bacteria can turn on stress-response genes and switch to more tolerant phenotypes on exposure to environmental stresses; (5) genetic changes, probably selected by different stress conditions, such as mutations and gene transfer could occur inside the biofilm. In these conditions, biofilm associated infections require a different approach, both clinically and paraclinically.  相似文献   

8.
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections.  相似文献   

9.
Staphylococcus aureus is a common pathogen associated with nosocomial infections. It can persist in clinical settings and gain increased resistance to antimicrobial agents through biofilm formation. We have found that alpha-toxin, a secreted, multimeric, hemolytic toxin encoded by the hla gene, plays an integral role in biofilm formation. The hla mutant was unable to fully colonize plastic surfaces under both static and flow conditions. Based on microscopy studies, we propose that alpha-hemolysin is required for cell-to-cell interactions during biofilm formation.  相似文献   

10.

Background

Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear.

Methodology/Principal Findings

The change in resistance of B. pseudomallei to doxycycline, ceftazidime, imipenem, and trimethoprim/sulfamethoxazole during biofilm formation were measured as minimum biofilm elimination concentration (MBEC) in 50 soil and clinical isolates and also in capsule, flagellin, LPS and biofilm mutants. Almost all planktonic isolates were susceptible to all agents studied. In contrast, when they were grown in the condition that induced biofilm formation, they were markedly resistant to all antimicrobial agents even though the amount of biofilm production was not the same. The capsule and O-side chains of LPS mutants had no effect on biofilm formation whereas the flagellin-defective mutant markedly reduced in biofilm production. No alteration of LPS profiles was observed when susceptible form was changed to resistance. The higher amount of N-acyl homoserine lactones (AHLs) was detected in the high biofilm-producing isolates. Interestingly, the biofilm mutant which produced a very low amount of biofilm and was sensitive to antimicrobial agents significantly resisted those agents when grown in biofilm inducing condition.

Conclusions/Significance

The possible drug resistance mechanism of biofilm mutants and other isolates is not by having biofilm but rather from some factors that up-regulated when biofilm formation genes were stimulated. The understanding of genes related to this situation may lead us to prevent B. pseudomallei biofilms leading to the relapse of melioidosis.  相似文献   

11.
Escherichia coli biofilm consists of a bacterial colony embedded in a matrix of extracellular polymeric substances (EPS) which protects the microbes from adverse environmental conditions and results in infection. Besides being the major causative agent for recurrent urinary tract infections, E. coli biofilm is also responsible for indwelling medical device‐related infectivity. The cell‐to‐cell communication within the biofilm occurs due to quorum sensors that can modulate the key biochemical players enabling the bacteria to proliferate and intensify the resultant infections. The diversity in structural components of biofilm gets compounded due to the development of antibiotic resistance, hampering its eradication. Conventionally used antimicrobial agents have a restricted range of cellular targets and limited efficacy on biofilms. This emphasizes the need to explore the alternate therapeuticals like anti‐adhesion compounds, phytochemicals, nanomaterials for effective drug delivery to restrict the growth of biofilm. The current review focuses on various aspects of E. coli biofilm development and the possible therapeutic approaches for prevention and treatment of biofilm‐related infections.  相似文献   

12.
《Biologicals》2014,42(1):1-7
Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell–cell and cell–surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review.  相似文献   

13.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

14.
Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm‐forming strains of NTHi. Of the test chalcones, 3‐hydroxychalcone (chalcone 8 ) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8 , which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong‐biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non‐antimicrobial. In terms of structure–activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3‐hydroxychalcone (chalcone 8 ) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm‐associated infections.  相似文献   

15.
【背景】单核细胞增生李斯特菌(Listeria monocytogenes,Lm)对一些临床常用抗生素、乳酸链球菌素(Nisin)等抗菌药物的敏感性下降,然而其背后的机制仍未完全阐明。【目的】调查转运蛋白VirAB在Lm对抗菌药物的耐药性及生物被膜形成中的作用。【方法】利用同源重组技术构建Lm基因缺失突变株,比较野生株和缺失株对抗菌药物的耐药性;利用微孔板法观测突变株生物被膜形成能力的变化;利用平板泳动法研究菌株的泳动能力。【结果】与野生株相比,virAB缺失突变株对头孢类抗生素、Nisin和溴化乙锭的敏感性增加;当培养基中分别添加亚致死浓度的苯扎氯铵、卡那霉素和四环素时,突变株均表现出不同程度的生长缺陷。缺失virAB后菌株形成生物被膜的能力下降。【结论】VirAB在Lm对头孢类等抗菌药物的耐药及生物被膜形成方面具有重要作用。  相似文献   

16.
Rahman M  Kim S  Kim SM  Seol SY  Kim J 《Biofouling》2011,27(10):1087-1093
Lytic bacteriophages (phages) have been investigated as treatments for bacterial infectious diseases. An induced phage, SAP-26, was isolated from a clinical isolate of Staphylococcus aureus. It belongs to the family Siphoviridae and its genome consists of double-stranded 41,207 bp DNA coding for 63 open reading frames. The phage SAP-26 showed a wide spectrum of lytic activity against both methicillin-resistant S. aureus and methicillin-susceptible S.aureus. Furthermore, combined treatment with a phage and antimicrobial agents showed a strong biofilm removal effect which induced structural changes in the biofilm matrix and a substantial decrease in the number of bacteria. Such a broad host range in S. aureus and biofilm removal activity of the phage SAP-26 suggests the possibility of its use as a therapeutic phage in combination with appropriate antimicrobial agent(s). Among the three antimicrobial agents combined with phage, the combination of rifampicin showed the best biofilm removal effect. To the authors' knowledge, this study showed for the first time that S. aureus biofilm could be efficiently eradicated with the mixture of phage and an antimicrobial agent, especially rifampicin.  相似文献   

17.
由于抗菌药物的开发周期越来越长,远远赶不上细菌耐药的发展速度,临床鲍曼不动杆菌多重耐药与泛耐药现象日益严重。因此,人们越来越关注对抗菌药物以外的抗菌物质的开发,尤其是从生存条件方面来研究抑制耐药菌活性的方法,如金、银、铜等金属离子对鲍曼不动杆菌的作用。本文主要综述铁、锌等金属离子及其螯合物对鲍曼不动杆菌的抗菌作用。铁、锌等金属离子通过与一系列酶的协同作用,调控外排泵或影响生物膜形成及其黏附性等来抑制细菌生长。此外,一些非必需金属如金、银、钯等对鲍曼不动杆菌也具有很强的毒性,有良好的抗菌和降低耐药率的效果,可作为医疗留置器械的抗菌涂层等来预防感染。  相似文献   

18.
Bacterial biofilms at times undergo regulated and coordinated dispersal events where sessile biofilm cells convert to free-swimming, planktonic bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, we previously observed that dispersal occurs concurrently with three interrelated processes within mature biofilms: (i) production of oxidative or nitrosative stress-inducing molecules inside biofilm structures, (ii) bacteriophage induction, and (iii) cell lysis. Here we examine whether specific reactive oxygen or nitrogen intermediates play a role in cell dispersal from P. aeruginosa biofilms. We demonstrate the involvement of anaerobic respiration processes in P. aeruginosa biofilm dispersal and show that nitric oxide (NO), used widely as a signaling molecule in biological systems, causes dispersal of P. aeruginosa biofilm bacteria. Dispersal was induced with low, sublethal concentrations (25 to 500 nM) of the NO donor sodium nitroprusside (SNP). Moreover, a P. aeruginosa mutant lacking the only enzyme capable of generating metabolic NO through anaerobic respiration (nitrite reductase, DeltanirS) did not disperse, whereas a NO reductase mutant (DeltanorCB) exhibited greatly enhanced dispersal. Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilms and biofilm-related infections. We observed that exposure to SNP (500 nM) greatly enhanced the efficacy of antimicrobial compounds (tobramycin, hydrogen peroxide, and sodium dodecyl sulfate) in the removal of established P. aeruginosa biofilms from a glass surface. Combined exposure to both NO and antimicrobial agents may therefore offer a novel strategy to control preestablished, persistent P. aeruginosa biofilms and biofilm-related infections.  相似文献   

19.
Evaluation of: Mowat E, Butcher J, Lang S, Williams C, Ramage G: Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol. 56, 1205-1212 (2007). Many microorganisms possess the innate ability for adhering to biotic and abiotic objects, and grow as benthic cells. The adhered cells produce an extracellular matrix in which the cells are embedded. The matrix-forming materials together with the cells form a biofilm often hundreds of micrometers in thickness. The biofilm provides the organism with a protective niche from the inhibitory effect of antimicrobial drugs, hence the production of biofilm is considered a survival mechanism. The pathogenic yeast Candida albicans is a well-known biofilm producer. The increasing incidence of antifungal drug resistance of bioprosthetic device infections in particular, and intravascular catheter-related infections of C. albicans is now largely attributed to biofilm formation. An intriguing question is whether the ability to produce biofilm is present in pathogenic filamentous fungi such as Aspergillus species. Mowat et al. describe the development of a simple in vitro model for studying the effects of antifungal drugs on a multicellular community of Aspergillus fumigatus.  相似文献   

20.
Lytic bacteriophages (phages) have been investigated as treatments for bacterial infectious diseases. An induced phage, SAP-26, was isolated from a clinical isolate of Staphylococcus aureus. It belongs to the family Siphoviridae and its genome consists of double-stranded 41,207 bp DNA coding for 63 open reading frames. The phage SAP-26 showed a wide spectrum of lytic activity against both methicillin-resistant S. aureus and methicillin-susceptible S.aureus. Furthermore, combined treatment with a phage and antimicrobial agents showed a strong biofilm removal effect which induced structural changes in the biofilm matrix and a substantial decrease in the number of bacteria. Such a broad host range in S. aureus and biofilm removal activity of the phage SAP-26 suggests the possibility of its use as a therapeutic phage in combination with appropriate antimicrobial agent(s). Among the three antimicrobial agents combined with phage, the combination of rifampicin showed the best biofilm removal effect. To the authors' knowledge, this study showed for the first time that S. aureus biofilm could be efficiently eradicated with the mixture of phage and an antimicrobial agent, especially rifampicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号