首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Deformed wing virus (DWV), notorious for its virulence in the western honey bee (Apis mellifera) when vectored by the ectoparasitic mite Varroa destructor, is also widespread among wild bumble bee species, presumably through spillover from honey bees. Experimental studies on the virulence of DWV in Bombus spp. have provided equivocal results and have until now been confined to bumble bees under laboratory conditions.
  2. Here, we inoculated commercially reared Bombus terrestris workers with DWV-A through feeding or injection and introduced them into experimental colonies placed in the field, thus exposing them to the environment and associated stressors. We monitored the survival of inoculated worker bumble bees and quantified their viral load at 10 days post inoculation.
  3. Bombus terrestris workers injected with DWV-A supported high viral loads and exhibited significantly reduced median survival compared to controls. Bumble bees inoculated by feeding had low or zero detectable viral loads while their mortality did not differ from the control group.
  4. Our results demonstrate that, although DWV-A is pathogenic for commercial B. terrestris, the risks for individual fitness from spillover of DWV-A during foraging on shared flowers appear limited.
  5. The findings of this experiment also highlight the necessity to address the potential context-dependence of virulence when evaluating the impact of a pathogen in an alternative host.
  相似文献   

2.
1. Ground‐nesting colonies of bumble bees incubate their brood at > 30 °C if floral forage provides sufficient energy and the thermogenic power of the colony can counteract cool soil conditions. To explore the basis of incubation, the thermogenic power and sugar consumption of orphaned nests of bumble bee workers (microcolonies) were investigated under laboratory conditions. 2. This study tested experimentally the effect of variation in worker number (ranging from four to 12 adults) on a microcolony's capacity to regulate brood temperature and recover from acute cold exposure. Microcolonies were provided with ad libitum sugar syrup and minimal insulation and maintained at an ambient temperature of c. 25 °C. Energy conversion efficiency was estimated by comparing sugar consumption with the power required for artificial incubation. The joint energetics of foraging and incubation were modelled in wild colonies to explore the effect of colony size and landscape quality on thermoregulation. 3. The results showed that all sizes of microcolonies regulated brood temperature at c. 31 °C under laboratory conditions, which required 96 mW of thermogenic power. It was estimated that individual workers of B. terrestris generated an incubatory power of 35 mW. The smallest microcolonies had the highest conversion efficiency (57%), apparently because few workers were required for incubation. 4. Modelling indicated that small microcolonies of three to seven adult workers have the capacity for normal brood incubation in the wild, but that the minimum viable colony size increases as floral forage becomes poorer or more distant. 5. These preliminary findings suggest the feasibility of identifying the minimum conditions (forage quality, soil temperature, and colony size) necessary for brood incubation by queenright colonies in the wild.  相似文献   

3.
We conducted laboratory experiments to investigate the lethal and sublethal effects of clothianidin on bumble bee, Bombus impatiens Cresson, colony health and foraging ability. Bumble bee colonies were exposed to 6 ppb clothianidin, representing the highest residue levels found in field studies on pollen, and a higher dose of 36 ppb clothianidin in pollen. Clothianidin did not effect pollen consumption, newly emerged worker weights, amount of brood or the number of workers, males, and queens at either dose. The foraging ability of worker bees tested on an artificial array of complex flowers also did not differ among treatments. These results suggest that clothianidin residues found in seed-treated canola and possibly other crops will not adversely affect the health of bumble bee colonies or the foraging ability of workers.  相似文献   

4.
Summary Bumblebees must forage to provide food to the colony. However, foraging is costly as worker longevity is inversely related to foraging effort. Given this trade-off, workers from colonies with abundant food supplies could either maintain foraging to increase reserves for future use or forage less to avoid the associated costs. We tested these hypotheses over one summer, using 13 pairs of field colonies of Bombus impatiens. Half of the colonies were provided with a sucrose solution ad libitum and pollen at regular intervals throughout their entire development, while the other half served as controls. We measured the forager activity rates in colonies with infra-red motion detectors fit in nest box entrances. However, due to reasons beyond our control (loss of the queen, usurpation by Psithyrus, debris in the entrance tunnel, etc.), we could use data from only two pairs of colonies for the analysis. Food supplemented colonies had a forager activity rate per worker 25% lower than controls which supports the hypothesis that workers reduce risks when given the opportunity.Received 15 May 2003; revised 15 January 2004; accepted 19 February 2004.  相似文献   

5.
In colonies of social Hymenoptera (ants, bees and wasps), workers are often not very closely related to each other, because queens mate with several different males (polyandry) or because several functional queens are present (polygyny). Both characteristics increase genetic variation among the queens'' reproductive and worker offspring, but the benefits of this increased variation remain obscure. Here we report an experiment where genetically homogeneous and genetically heterogeneous colonies of the bumble bee, Bombus terrestris, have been exposed to parasitism under field conditions. Colonies of high or low genetic variation were achieved by adding and removing brood from donor colonies. The results showed a consistent effect in that genetically variable colonies experienced reduced parasite loads, i.e. lower prevalence, intensity and parasite species richness, for a range of protozoa, nematodes, mites or parasitoids affecting the workers. We therefore propose that polyandry and/or polygyny of social insects may be beneficial under parasitism.  相似文献   

6.
Experiments were conducted in commercial tomato, Lycopersicon esculentum Miller (Solanaceae), greenhouses to compare the relative foraging effort of two bumble bee species, Bombus occidentalis Greene and Bombus impatiens Cresson, to examine interspecific competition between B. occidentalis and B. impatiens, and to determine whether bumble bee colonies grew to their full population potential in commercial tomato greenhouses. B. impatiens colonies had more brood and workers and made more foraging trips per hour than B. occidentalis colonies. However, B. impatiens returned to the colony without pollen loads and left their colonies without dropping off their pollen loads more frequently than B. occidentalis greenhouse colonies. Our data also suggest that the presence of B. impatiens had a detrimental effect on B. occidentalis populations. Furthermore, B. occidentalis colonies did not grow to their full population potential in tomato greenhouses, with fewer workers in greenhouse colonies than in colonies placed outside in a natural environment, or in colonies that were physically enclosed and protected from external mortality. Together, this study suggests that B. impatiens is a better pollinator than B. occidentalis. It also shows that unknown factors are limiting the size of B. occidentalis colonies in tomato greenhouses.  相似文献   

7.
It is very difficult to find natural colonies of bumble bees in the field. In this study, the yearly dynamics of floral resources and foraging bumble bee workers were investigated. The optimal colony locations were estimated from the data using moving average on the assumption that bumble bee queens and workers were omniscient. Fortunately, a colony of Bombus ardens was found, and the true location of the colony was evaluated with the estimated optimal locations. The true location was optimal at the latter half of the breeding season.An erratum to this article can be found at  相似文献   

8.
1. Bumble bees exhibit worker size polymorphisms; highly related workers within a colony may vary up to 10‐fold in body mass. As size variation is an important life history feature in bumble bees, the distribution of body sizes within the colony and how it fluctuates over the colony cycle were analysed. 2. Ten commercially purchased colonies of Bombus impatiens (Cresson) were reared in ad libitum conditions. The size of all workers present and newly emerging workers (callows) was recorded each week. 3. The average size of bumble bee workers did not change with colony age, but variation in body size tended to decrease over time. The average size of callows did not change with population size, but did tend to decrease with colony age. In all measures, there was considerable variation among colonies. 4. Colonies of B. impatiens usually produced workers with normally distributed body sizes throughout the colony life cycle. Unlike most polymorphic ants, there was no increase in worker body size with colony age or colony size. This provides the first, quantitative data on the ontogeny of bumble bee worker size distribution. The potential adaptive significance of this size variation is discussed.  相似文献   

9.
Survivorship curves and longevity of workers were studied in two queenright and two queenless colonies of Bombus (Fervidobombus) atratus. Survivorship curves for workers of all colonies were, in general, convex, indicating an increasing mortality rate with increasing age. The mean longevity for the workers from queenright colonies, 24.3 days and 17.6 days, was not significantly different from that in queenless colonies, 21.2 days and 20.2 days. In all colonies workers started foraging activities when aged 0-5 days, and the potential forager rates rose progressively with increasing age. Mortality rates within each age interval were significantly correlated with the foraging worker rates in all colonies. Only in two of the colonies (one queenright and one queenless) longevity was significantly correlated with worker size. The duration of brood development period seems to be one of the most important factors influencing adult worker longevity in bumble bee species.  相似文献   

10.
Summary We studied the effects of intrinsic colony characteristics and an imposed contingency on the life span and behavior of foragers in the swarm-founding social waspPolybia occidentalis. Data were collected on marked, known-age workers introduced into four observation colonies.To test the hypothesis that colony demographic features affect worker life span, we examined the relationships of colony age and size with worker life span using survivorship analysis. Colony age and size had positive relationships with life span; marked workers from two larger, older colonies had longer life spans (¯X = 24.7 days) than those from two smaller, younger colonies (¯X = 20.1 days).We quantified the effects of experimentally imposed nest damage on forager behavior, to determine which of three predicted behavioral responses by foragers to this contingency (increased probability of foraging for building material, increased rate of foraging, or decrease in age of onset of foraging) would be employed. Increasing the colony level of need for materials used in nest construction (wood pulp and water) by damaging the nests of two colonies did not cause an increase in either the proportion of marked workers that gathered nest materials or in foraging rates of marked individuals, when compared with introduced workers in two simultaneously observed control colonies. Instead, nest damage caused a decrease in the age at which marked workers first foraged for pulp and water. The response to an increase in the need for building materials was an acceleration of behavioral development in some workers.  相似文献   

11.
Almond trees are one of the most important crops in the Balearic Islands. The pollination of almonds is limited to the activity of insects, and cross‐pollination is necessary for fruit development. Currently, honey bees and wild bee populations are declining considerably due to multiple causes, such as the use of pesticides, diseases and habitat loss. An alternative to increase the almond production is the use of commercial pollinators. In this long‐term (3 years) study, the effect of the introduction of Bombus terrestris colonies on almond production was evaluated in two orchards. Two experimental designs were carried out to study the best management of this pollinator. For 2 years, all bumble bee colonies were placed in the middle of the plot and during the last year, the bumble bee colonies were distributed homogenously in the plot. Fruit set and the foraging behaviour of bumble bees during the blossoming period was determined, and the effect of different environmental variables on the visitation rate of bumble bees was assessed by means of a generalized linear mixed model (GLMM). Moreover, for the first time, the spatial distribution of fruit set was evaluated. Our results show that fruit set was significantly higher in the fields where B. terrestris had been introduced than in the control plots. This increased production resulted in a positive economic balance for the farmer. Moreover, bumble bees showed to prefer trees in a southwest orientation that were close to their colony. The activity of bumble bees showed to be significantly influenced by wind speed (the higher the speed the more flowers are visited by B. terrestris) and time after flowering (visitation rate decreased with days after flowering). In order to improve its management and obtain the highest possible almond production, it is important to understand the activity and behaviour of this pollinator.  相似文献   

12.
1. Workers in several bee species travel to conspecific nests (‘drifting’), enter them, and produce male offspring inside them, so acting as intra‐specific social parasites. This adds a new dimension to bees' reproductive behaviour and spatial ecology, but the extent to which drifting occurs over field scales, i.e. at natural nest densities in field conditions, has been unclear. 2. Using the bumble bee Bombus terrestris (Linnaeus) as a model system, we sought to determine rates of worker drifting at field scales and the frequency of potential drifter workers in wild nests. 3. A field experiment with 27 colonies showed that workers travelled to, and became accepted in, conspecific nests that were up to 60 m away, although the number of accepted drifter workers within nests fell significantly with distance. The rate at which nests were entered by drifters was relatively high and significantly exceeded the rate at which drifters became accepted. 4. Microsatellite genotyping of eight field‐collected nests from Greater London, U.K., showed that a low frequency (3%) of workers were not full sisters of nestmate workers and hence were likely to have been drifter workers. 5. It is therefore concluded that workers can drift to conspecific nests over field scales and confirmed that successful drifting occurs in natural populations. Drifting appears to be a natural but low‐frequency behaviour permitting B. terrestris workers to gain direct fitness.  相似文献   

13.
Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between‐year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony‐specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha?1 in 2014 and 2015, respectively), estimated between‐year lineage survival rate was 0.07, and there was no evidence of fine‐scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion.  相似文献   

14.
If the cognitive performance of animals reflects their particular ecological requirements, how can we explain appreciable variation in learning ability amongst closely related individuals (e.g. foraging workers within a bumble bee colony)? One possibility is that apparent ‘errors’ in a learning task actually represent an alternative foraging strategy. In this study we investigate the potential relationship between foraging ‘errors’ and foraging success among bumble bee (Bombus terrestris) workers. Individual foragers were trained to choose yellow, rewarded flowers and ignore blue, unrewarded flowers. We recorded the number of errors (visits to unrewarded flowers) each bee made during training, then tested them to determine how quickly they discovered a more profitable food source (either familiar blue flowers, or novel green flowers). We found that error prone bees discovered the novel food source significantly faster than accurate bees. Furthermore, we demonstrate that the time taken to discover the novel, more profitable, food source is positively correlated with foraging success. These results suggest that foraging errors are part of an ‘exploration’ foraging strategy, which could be advantageous in changeable foraging environments. This could explain the observed variation in learning performance amongst foragers within social insect colonies.  相似文献   

15.
Chapman RE  Wang J  Bourke AF 《Molecular ecology》2003,12(10):2801-2808
Conservation biologists, evolutionary ecologists and agricultural biologists require an improved understanding of how pollinators utilize space and share resources. Using microsatellite markers, we conducted a genetic analysis of space use and resource sharing at several spatial scales among workers of two ecologically dissimilar bumble bee species (Bombus terrestris and B. pascuorum) foraging in an urban landscape (London, UK). At fine scales, the relatedness of workers visiting small patches of flowers did not differ significantly from zero. Therefore, colonies shared flower patches randomly with other colonies, suggesting that worker scent-marks deterring visits to unrewarding flowers have not evolved as signals benefiting nestmates. To investigate space use at intermediate scales, we developed a program based on Thomas & Hill's maximum likelihood sibship reconstruction method to estimate the number of colonies utilizing single sites. The average number of colonies (95% confidence limits) sending workers to forage at sites of approximately 1 ha in area was 96 colonies (84-118) in B. terrestris and 66 colonies (61-76) in B. pascuorum. These values are surprisingly high and suggested that workers travelled far from their colonies to visit the sites. At the landscape scale, there was little or no genetic differentiation between sites. We conclude that urban habitats support large bumble bee populations and are potentially valuable in terms of bumble bee conservation. In addition, bumble bee-mediated gene flow in plants is likely to occur over large distances and plant-bumble bee conservation requires landscape-scale action.  相似文献   

16.
To assess the impact of Bombus terrestris invasion on the foraging efficiency of native Japanese bumblebees, consumption and acquisition of floral resources during foraging on flowers of native Japanese plant species were investigated using enclosures with three treatments: one with only B. terrestris (exotic), one with both B. terrestris and native Japanese bumblebee species (mixed), and one with only Japanese species (native), but with the bumblebee density held constant. Changes in the body mass of queens and the nest mass of colonies for two days did not significantly differ among four combinations of the species and treatment, B. terrestris in the exotic and mixed treatments and Japanese species in the mixed and native treatments. Thus, it is not clear that B. terrestris has higher foraging efficiency than native species and that B. terrestris individuals more negatively affect the foraging efficiency of native species than individuals of the native species themselves. The nectar standing crop of Cirsium kamtschaticum was smaller in the exotic treatment than in the mixed and native treatments. However, this may have been an artifact of differences in the numbers of flowers in the various treatments. T. Nagamitsu and T. Kenta contributed equally to this work  相似文献   

17.
18.
Bumble bees pollinate and forage on flowers of crop and wild plants in agricultural landscapes. These interactions may depend on landscape patterns and bumble bee traits. We studied the abundance, colony density, and foraging range in long-tongued Bombus diversus Smith and short-tongued B. hypocrita Pérez, and evaluated their visits to flowers of wild plants and cultivated kabocha squash (Cucurbita maxima Duchesne). In forests in a farmland, B. hypocrita workers were trapped more frequently in the canopy. Full-sibs determined by nuclear microsatellite genotypes among workers collected in the farmland showed higher colony density and a larger foraging radius in B. hypocrita (30.8 km?2 and 848 m) than in B. diversus (8.3 km?2 and 723 m), respectively. Regarding wild plants, workers more frequently visited shallow flowers in B. hypocrita and deep flowers in B. diversus. These results suggest that bumble bees with different traits forage on different wild flowers in different habitats. Squash flowers were visited by both bumble bee species at similar frequency in the latter period of colony growth when males and new queens appeared. Composition of full-sib workers visiting squash and wild flowers did not depend on the number of collected workers of individual colonies, indicating that foraging on squash flowers was not associated with colony growth. Thus, growth and reproduction of bumble bee colonies may be supported by various wild plants and cultivated squash, respectively.  相似文献   

19.
Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days ‘on dose’ followed by 14 days ‘off dose’) to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial ‘on dose’ period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg−1 dietary imidacloprid. During the following ‘off dose’ period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg−1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop.  相似文献   

20.
Eusociality and male haploidy of bumblebees (Bombus spp.) enhance the deleterious effects of population decline and aggravate the degeneration of population fitness compared to solitary and diploid species. The highly dispersive male sex may be the prime driver to connect otherwise isolated populations. We therefore studied the temporal and spatial structure of the male population of Bombus terrestris (Linnaeus 1758) and Bombus lapidarius (Linnaeus 1758) using microsatellite DNA markers. We found that the majority of the males in a 1000 m2 sampling area originated from colonies located outside of the workers foraging range, which was consistent with the genetic distances among colonies. The analyses of temporal population sub-structure based on both colony detection rate over time and the clustering software STRUCTURE consistently suggested one large and temporally unstructured male population. Our results indicate an extended male flight distance for both species. Though the range of queen dispersal remains to be studied, the effective size (N e) of bumblebees is increased by extended male mating flight ranges (A m ) exceeding worker foraging distance by factor 1.66 (A m  = 69.75 km2) and 1.74 (A m  = 13.41 km2), B. terrestris and B. lapidarius, respectively. Thus this behaviour may counteract genetic deprivation and its effects. All populations were genetically highly diverse and showed no signs of inbreeding. We discuss the implications of our findings in context of bumblebee population dynamics and conservation. We also highlight the effects and benefits of sampling both workers and males for population genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号