首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery efforts for the endangered pallid sturgeon (Scaphirhynchus albus) include supplementation of wild stocks with hatchery reared progeny. Identifying the extent of genetic stock structure, which has previously been detected in samples from the range extremes, will help to determine whether stock transfers might be harmful. DNA microsatellite genotypes were screened in pallid sturgeon from the upper Missouri River, lower Missouri River, middle Mississippi River and Atchafalaya River and analyzed using a combination of Bayesian model‐based and more traditional F‐statistic based methods to characterize genetic differentiation. Scaphirhynchus specimens were collected by researchers active in the recovery effort and genotypes were screened at 16 microsatellite loci. Because there is considerable genetic and morphological overlap between pallid sturgeon, shovelnose sturgeon, and their hybrids, a combination of morphological and genetic techniques were used to eliminate shovelnose and possible hybrids from the sample. Genetic differentiation was detected among samples (overall θ = 0.050, P = 0.001). Pairwise θ, genetic distances, and Bayesian assignment testing reveal that pallid sturgeon from the upper Missouri River are the most distinct group with pairwise comparisons of pallid sturgeon among all the remaining samples exhibiting lower θ values, higher genetic distances, and self assignment scores. Our results indicate that using local broodstock, when available, should be used for pallid sturgeon propagation. If local broodstock are not available, geographically proximate individuals would limit genetic differences between native and stocked individuals.  相似文献   

2.
The objectives of this research were to evaluate the condition, size structure, and growth of shovelnose sturgeon (Scaphirhynchus platorynchus) in the lower Platte River, Nebraska. A total of 1338 shovelnose sturgeon was collected using drifted gill and trammel nets (n = 954), trot lines (n = 340), and benthic trawls (n = 44) in the spring, summer, and autumn from four reaches: (i) Two Rivers State Park, (ii) confluence of Platte and Elkhorn rivers (iii) Louisville, Nebraska, and (iv) confluence of Platte and Missouri rivers during the spring, summer, and autumn of 2000 through 2004. Structural and condition indices were compared among reaches and years. Incremental relative stock densities (RSD) for shovelnose sturgeon sampled throughout the entire lower Platte River were: stock‐quality (1), quality‐preferred (12), preferred‐memorable (82), and memorable‐trophy (5). Proportional stock values were >99 for all years. A significance was detected in RSD categories among reaches and years with larger length‐categories observed in the upstream reaches. Mean relative weight (Wr) for all shovelnose sturgeon was 86.5, indicating a fit population. Mean Wr showed no significant differences among years, but significance was detected among reaches and RSD categories. Shovelnose sturgeon in the lower Platte River appear to be in good condition and exhibit different length‐frequency distributions longitudinally.  相似文献   

3.
Microsatellite variation from 13 disomic loci is reported for a total of 208 individuals of the genus Scaphirhynchus. This includes 105 individuals of the pallid sturgeon (Scaphirhynchus albus) from the lower Mississippi River, 11 pallid sturgeon from the Upper Mississippi and Missouri rivers, 65 shovelnose sturgeon (S. platorynchus) from the lower Mississippi River, six Alabama sturgeon (S. suttkusi), and 21 individuals of sturgeon identified as intermediate between S. albus and S. platorynchus. Results indicate that all five of the above population/species units are significantly differentiated from one another based on pairwise FST estimates. Locus Spl‐7 was diagnostic for the Alabama sturgeon and serves to further differentiate this allopatric species from other Scaphirhynchus. Classification of genotypes with and without a priori designations failed to clearly delineate the species and intermediates in the latter case but was successful for the species but not in the intermediates in the former case. The presence of six unique alleles in five of the 21 morphologically ‘intermediate’ sturgeon examined requires additional evaluation but suggests that these individuals are possibly not the result of hybridization. We hope that raising these important issues will bring all stakeholders to the table to establish a concerted effort needed for both morphological and molecular analyses to adequately address the question of hybridization and the origin of the morphological variation in these fishes.  相似文献   

4.
The pallid sturgeon (Scaphirhynchus albus), which is protected under the US endangered species act, and shovelnose sturgeon (S. platorhynchus), which is legally harvested in some locations, are sympatric throughout the range of pallid sturgeon. There is considerable morphological overlap between the species making discrimination problematic. The inability to reliably differentiate between species across all life stages has hampered pallid sturgeon recovery efforts. Furthermore, the two species are believed to hybridize. This study used allele frequency data at multiple microsatellite loci to perform Bayesian and likelihood-based assignment testing and morphological measures and meristics to discriminate pallid, shovelnose, and putative hybrid sturgeons from the middle Mississippi River. Bayesian model-based clustering of the genetic data indicated that two natural genetic units occur in the region. These units correspond to morphologically identified pallid and shovelnose sturgeon. Some individuals were morphologically intermediate and many of these failed to strongly assign genetically as either pallid or shovelnose sturgeon, suggesting they may be hybrids. These data indicate that pallid sturgeon and shovelnose sturgeon are genetically distinct in the middle Mississippi River (F ST = 0.036, P < 0.0001) and suggest that hybridization between pallid sturgeon and shovelnose sturgeon has occurred in this region with genetic distance estimates indicating the greatest distance is between pallid and shovelnose sturgeon, while hybrid sturgeon are intermediate but closer to shovelnose. This study demonstrates that assignment testing with multiple microsatellite markers can be successful at discriminating pallid sturgeon and shovelnose sturgeon, providing a valuable resource for pallid sturgeon recovery and conservation.
A. W. SchreyEmail:
  相似文献   

5.
The shovelnose sturgeon, Scaphirhynchus platorynchus, is a freshwater sturgeon of the Mississippi and Missouri rivers and their tributaries. It is one of the smaller North American sturgeons, seldom weighing more than 2.5 kg over most of its range except in the upper Missouri River, where individuals of over 7 kg have been found. Spawning occurs in spring at temperatures between 17 and 21 °C over rock or gravel substrate downstream from dams, near rock structures, or in tributaries. most males reach sexual maturity at 5 years, most females at 7 years. Adults do not spawn every year. Shovelnose sturgeon are found in large, turbid rivers and frequently concentrate in areas downstream from dams or at the mouths of tributaries. Population densities range up to 2500 fish per km. They are commonly found in areas of current over sandy bottoms or near rocky points or bars, where they feed primarily on aquatic invertebrates. The shovelnose sturgeon is classified as a sport species in 12 of 24 states where it occurs. Commercial harvest is allowed in seven states, where fresh shovelnose sturgeon sell for 55 to 88 cents per kg, smoked shovelnose for about $5.75 per kg, and roe from 33 to 110 dollars per kg. About 25 tons of shovelnose sturgeon are harvested commercially each year. Shovelnose sturgeon are considered extirpated in three states, fully protected in four states, and rare, threatened, or of special concern in eight states. Populations are considered stable throughout most of the upper Mississippi, lower Missouri, Red, and Atchafalaya rivers. Three states, Wyoming, West Virginia, and New Mexico, have developed plans to reintroduce the species into rivers where it has been extirpated.  相似文献   

6.
The sturgeon genus Scaphirhynchus consists of threerecognized species. Pallid and shovelnose sturgeon (S. albusand S. platorynchus, respectively) are sympatric in theMissouri and lower Mississippi Rivers of the central United States. TheAlabama sturgeon (S. suttkusi) is endemic to the nearby MobileRiver drainage and is isolated geographically from the other twospecies. Pallid sturgeon and the extremely rare Alabama sturgeon arelisted as endangered under the US Endangered Species Act (ESA).In contrast, shovelnose sturgeon are relatively common and are notlisted. Despite these taxonomies and morphological evidence, somebiologists have questioned the genetic and taxonomic distinctions of thethree species, thus raising doubts concerning the validity of protectingpallid and Alabama sturgeon under the ESA. To investigate thesequestions, we compared a 436 base-pair sequence of the mitochondrial DNA(mtDNA) control region among the three species. We observed 16 mtDNAhaplotypes defined by 27 single base-pair substitutions (transitions)and one single base-pair insertion/deletion (indel) among 78individuals examined. The maximum sequence divergence among thosehaplotypes (2.06%) was less than values usually observed betweenfish species. However, Alabama sturgeon (n = 3) weredistinguished from the other two taxa (n = 75) by aunique base-pair substitution and haplotype, and pallid and shovelnosesturgeon at their northern range of natural sympatry (upper MissouriRiver) did not share any haplotypes. On the other hand, only frequencydifferences among shared haplotypes distinguished (P < 0.01)pallid and shovelnose sturgeon at their southern range of naturalsympatry (Atchafalaya River), and genetic distances between northern andsouthern localities for each species were nearly as large as thedistances between species. These latter results are consistent withseveral hypotheses, including reports (based on morphology) of putativenatural hybrids in the Atchafalaya River but not in the upper MissouriRiver. Overall, these mtDNA results indicate significant reproductiveisolation between pallid and shovelnose sturgeon in areas of naturalsympatry, and recent evolutionary divergence of Alabama sturgeon. ThesemtDNA results provide the first molecular genetic evidence fordistinguishing the three Scaphirhynchus species and, coupledwith morphological and biogeographic data, indicate that pallid andAlabama sturgeon should be evaluated as distinct species under theESA.  相似文献   

7.
A multiyear study of pallid sturgeon distribution and relative abundance was conducted in the lower and middle Mississippi river (LMR and MMR, respectively). The LMR and MMR comprise the free‐flowing Mississippi River extending 1857 river kilometers (rkm) from its mouth at the Gulf of Mexico upstream to the mouth of the Missouri River. A total of 219 pallid sturgeon and 6018 shovelnose sturgeon was collected during the periods 1996–1997 and 2000–2006. Trotlines baited with worms were the primary collecting gear. The smallest pallid sturgeon captured on trotlines was 405 mm FL and the largest was 995 mm FL. Mean size of pallid sturgeon was statistically smaller in the Mississippi River below the Atchafalaya River near Baton Rouge, LA (621 mm FL). Mean abundance (catch per trotline night) of pallid sturgeon was highest at water temperatures around 10°C. There was a latitudinal trend in mean abundance of pallid and shovelnose sturgeon, but the pattern differed between species. Pallid sturgeon abundance was statistically (P < 0.05) higher (0.3 fish per trotline night) in the lower reach between the Atchafalaya River and New Orleans (rkm 154–507), and at the Chain of Rocks (COR), a low water dam near the mouth of the Missouri River. Pallid sturgeon abundance between these two locations was statistically the same (0.12–0.23). Shovelnose sturgeon abundance increased going upstream, but was disproportionally higher at the COR (22 fish per line compared with <6 fish per line in other reaches). Overall, the ratio between pallid and shovelnose sturgeon varied from a high of 1 : 6 at the lower reach, and gradually decreased upstream to a low of 1 : 77 at the COR. Based on differences in sturgeon abundance, size and habitat characteristics, the free‐flowing Mississippi River can be divided into two reaches in the MMR (i.e. COR is a separate location), and four reaches (i.e., including the Atchafalaya River) in the LMR where management goals may differ.  相似文献   

8.
Pallid sturgeon (Scaphirhynchus albus) captured in the Middle and Lower Mississippi River (i.e. below St. Louis, MO, USA) are morphologically very similar to shovelnose sturgeon (Scaphirhynchus platorynchus). Available empirical data are limited to a few studies based on low sample sizes from disjointed populations. Geneticists are currently searching for markers that will differentiate the two species, but the need for unequivocal species‐specific field characters remains. Continuation of commercial fishing for shovelnose sturgeon in some states necessitates an immediate means for accurate field identifications. Previous studies of lower basin river sturgeon classified individuals with simple morphometric character indices and interpreted intermediacy as interspecific hybridization. In this study, morphometric variation among Scaphirhynchus specimens from the Middle and Lower Mississippi River is examined for evidence of hybridization. Data are compared for large (>250‐mm standard length) hatchery‐reared and wild pallid specimens and wild shovelnose specimens. Specimens are compared using two morphometric character indices, two morphometric/meristic character indices and principal components analysis. Results indicate substantial morphological variation among pallid sturgeon below the mouth of the Missouri River. The amount of variation appears to decrease downstream in the Mississippi River. Sheared principal components analysis of morphometric data shows complete separation of shovelnose and pallid sturgeon specimens, whereas character indices indicate overlap. Both character indices and sheared principal components analysis demonstrate that pallid sturgeon in the Lower Mississippi River are morphologically more similar to shovelnose sturgeon than are pallids from the Upper Missouri River. This similarity, explained in previous studies as hybridization, may be the result of latitudinal morphometric variation and length‐at‐age differences between populations of the upper and lower extremes of the range.  相似文献   

9.
Pallid sturgeon Scaphirhynchus albus relative condition has been observed to be declining along the Nebraska reach (rkm 1212.6–801.3) of the Missouri River over the past several years; therefore, pallid sturgeon capture data was synthesized from the entire Missouri and Middle Mississippi rivers to document and compare how pallid sturgeon condition varies spatially and temporally throughout much of their current range. The study area was subdivided into four river reaches based on a priori statistical differences for pallid sturgeon catches from 2003 to 2015. Pallid sturgeon in the Middle Mississippi River (Alton Dam [rkm 321.9]) to the confluence of the Ohio River (rkm 0.0) were in the best condition while pallid sturgeon in the Middle Missouri River (Fort Randall Dam [rkm 1416.2]) to the Grand River confluence (rkm 402.3) were in the poorest condition. Furthermore, pallid sturgeon condition in the Upper Missouri River (Fort Peck Dam [rkm 2850.9] to the headwaters of Lake Sakakawea [rkm 2523.5] and lower Yellowstone River) and the Lower Missouri River (Grand River confluence to the Mississippi River confluence [rkm 0.0]) were significantly less than in the Middle Mississippi River but significantly higher than the Middle Missouri River. Temporally, pallid sturgeon condition was highly variable. Relative condition in the Middle Mississippi River was consistently above average (Kn = 1.1). Comparatively, Kn throughout the Missouri River rarely exceeded “normal” (Kn = 1.0), with Kn in the middle and lower reaches of the Missouri River having declined to the lowest observed. As pallid sturgeon recovery efforts continue, understanding the range‐wide differences and effects on condition could be critical, as poor condition may cause maturation delays, reproductive senescence or even mortality, which affects the likelihood of natural reproduction and recruitment.  相似文献   

10.
To determine the genetic origin of individual sturgeon that are morphologically intermediate to pallid (Scaphirhynchus albus) and shovelnose (Scaphirhynchus platorhynchus) sturgeon, we combined previously published mitochondrial DNA (mtDNA) and microsatellite data with additional microsatellite data. Two sympatric populations of pallid and shovelnose sturgeon from the upper Missouri River and a sympatric population containing pallid, shovelnose, and putative pallid-shovelnose hybrids from the Atchafalaya River were analyzed using an index of hybridization and a principle components analysis of individual relatedness scores. The addition of new microsatellite data improved our ability to genetically differentiate individual pallid and shovelnose sturgeon collected in both areas. Our methods distinguished morphologically intermediate Atchafalaya River sturgeon, which appear to be genetically intermediate between pallid and shovelnose sturgeon. The results support a hybrid origin for morphologically intermediate individuals, although it is unclear whether they are all first-generation hybrids or if some are the result of subsequent backcrossing with the more common shovelnose sturgeon.  相似文献   

11.
Age and growth of pallid sturgeon in the free-flowing Mississippi River   总被引:1,自引:1,他引:0  
Trotlines were used to capture pallid sturgeon in the free‐flowing Mississippi River, which extends from the Gulf of Mexico to the mouth of the Missouri River. Trotlines were baited with worms, and set overnight usually along the channel border. The pectoral fin rays of 165 pallid sturgeon caught in the Mississippi River were aged; 118 were from the lower Mississippi River (LMR) between the Gulf and mouth of the Ohio River, and 47 were from the middle Mississippi River (MMR) between the mouths of the Ohio and Missouri rivers. Initial agreement within ±1 year between two readers ranged from 53% for the LMR specimens, which were read first, to 84% for the MMR. Final age was agreed upon by both readers. For LMR pallid sturgeon, final age estimates ranged from 3 to 21 years with a mean (±SD) of 11.0 ± 4.7. For MMR pallid sturgeon, final age estimates ranged from 5 to 14 years with a mean of 9.5 ± 2.1. Seven pallid sturgeon marked with coded wire tags (CWT), indicating hatchery origin, were collected in the MMR. Age estimates for CWT fish were 7–8 years representing 1997 stocked fish, and 11–12 years representing 1992 progeny stocked in 1994. Von Bertalanffy growth equations for length indicated that pallid sturgeon in the MMR had higher growth rates for a given age than pallid sturgeon in the LMR. However, there were no significant differences (anova , P > 0.5) in the length–weight relationships between reaches. In the LMR, pallid sturgeon fully recruited to trotlines at age 11 and instantaneous total mortality (Z; slope of catch curve) was estimated at −0.12 (n = 10 year classes, r2 = 0.55, P = 0.01). Of the 118 sectioned rays from the LMR, 28 could not be reliably aged (only one section from the MMR could not be aged). Therefore, age was predicted from length using the von Bertalanffy equation. The catch curve was re‐calculated using the predicted ages of the 28 pallid sturgeon in the LMR resulting in Z = −0.07. In the MMR, pallid sturgeon fully recruited to trotlines at age 9 and Z was estimated at −0.36 (n = 6 year classes, r2 = 0.67, P = 0.04), which was significantly higher (anova , P = 0.04) than the LMR estimate. Higher mortality in the MMR may be due to habitat limitations compared to a larger, more diverse channel in the LMR, and incidental take of larger, older individuals during commercial harvesting of shovelnose sturgeon. Commercial take of shovelnose does not occur in the LMR except in the northern portion of the reach. Considering the presence of pallid sturgeon with CWT, recruitment of older individuals in the MMR may have been influenced by stocking a decade earlier. Management strategies for this endangered species should consider the differences in mortality rates among reaches, the impacts of commercial fishing on recovery of pallid sturgeon in the MMR, and the long‐term effects of hatchery fish now recruiting into the free‐flowing Mississippi River.  相似文献   

12.
Extensive habitat modifications within the Mississippi and Missouri rivers have presumably interfered with the reproductive isolating mechanisms between the endangered pallid sturgeon, Scaphirhynchus albus, and the sympatric shovelnose sturgeon, Scaphirhynchus platorynchus, causing hybridization between these two species. Several character indices were developed to assist fisheries biologists in identifying specimens of S. albus, S. platorynchus, and their putative hybrids. The indices have numerous assumptions, including that pure strains of both parental species are within the sample analyzed and that hybrids are morphologically intermediate relative to their parents. If these indices have produced inaccurate identifications, then previous work on Scaphirhynchus studies in the Mississippi and Missouri rivers are questionable, including status surveys, captive propagation efforts, or the harvesting of tissues for genetic studies. In this study we tested indices by examining progeny of ‘known’ pallid, shovelnose, and hybrid sturgeon propagated, raised, and preserved at hatcheries. These 60 specimens [78–600 mm standard length (SL)] were propagated with breeding stock from the upper Missouri River drainage, where hybridization between these two species presumably does not occur. Existing indices did not correctly identify small (<250 mm SL) or a combination of small and large (>250 mm SL) sizes of S. albus, S. platorynchus, and their hybrids. Indices worked fairly well in identifying large S. platorynchus, but not in differentiating large S. albus from hybrids. We used principal components analysis (PCA) as an alternative approach to character indices. No a priori knowledge of the identity of the specimen is required with this multivariate technique, which avoids potential circular reasoning present in indices. We were able to completely or almost completely separate both sturgeon species and their hybrids by extracting principal components from a correlation matrix of 13 meristic characters in a standard PCA and extracting size‐corrected principal components from a covariance matrix of 51 morphometric variables using a sheared PCA. Additionally, we demonstrated that first generation hybrids were intermediate with respect to their parental species. Multivariate analyses with a reduced character set of six meristic and 12 morphometric variables also led to accurate and reliable specimen identification. Head spines and numerous qualitative characters are also extremely useful in differentiating between Scaphirhynchus species and their hybrids. In addition to all morphometric characters, some meristic characters and the degree of head spine fusion vary significantly with SL of sturgeons. Recording appropriate data from released specimens, including photovouchers, and making this information available is essential for researchers to have any scientific or legal basis for genetic or any other studies involving these sturgeons.  相似文献   

13.
Sturgeon specimens encountered in the wild that exhibit visible signs of gross physical trauma often look to the naked eye to be in otherwise good condition. Visible morphological anomalies were observed in 9.1% of 176 pallid (Scaphirhynchus albus) and 4.6% of 4904 shovelnose (Scaphirhynchus platorynchus) sturgeon specimens captured in the Middle (mouth of Missouri River to mouth of Ohio River) and Lower (below mouth of Ohio River) Mississippi River from 1997 to 2004. Frequencies among the types of anomalies differed between the lower and middle river reaches. In the lower river, deformities from foreign objects (typically rubber bands) comprised almost one‐third of anomalies observed and may have contributed to other types of anterior injury which, if combined, would comprise the majority of lower river anomalies. In the middle river, nearly half of the observed anomalies involved damage to the caudal peduncle, usually a missing tail. Power regressions from length–weight relationships were compared for anomalous and non‐anomalous specimens and demonstrated no significant disparity, verifying the resiliency of river sturgeons.  相似文献   

14.
From May 2001 to June 2002 Wildhaber et al. (2005) conducted monthly sampling of Lower Missouri River shovelnose sturgeon (Scaphirhynchus platorynchus) to develop methods for determination of sex and the reproductive stage of sturgeons in the field. Shovelnose sturgeon were collected from the Missouri River and ultrasonic and endoscopic imagery and blood and gonadal tissue samples were taken. The full set of data was used to develop monthly reproductive stage profiles for S. platorynchus that could be compared to data collected on pallid sturgeon (Scaphirhynchus albus). This paper presents a comprehensive reference set of images, sex steroids, and vitellogenin (VTG, an egg protein precursor) data for assessing shovelnose sturgeon sex and reproductive stage. This reference set includes ultrasonic, endoscopic, histologic, and internal images of male and female gonads of shovelnose sturgeon at each reproductive stage along with complementary data on average 17‐β estradiol, 11‐ketotestosterone, VTG, gonadosomatic index, and polarization index.  相似文献   

15.
Shovelnose sturgeon Scaphirhynchus platorynchus are commercially important, supporting a viable roe fishery throughout much of the Mississippi River drainage. We examined the reproductive attributes of stage‐5 female shovelnose sturgeon captured from the upper Wabash River, Indiana, from March to June 2004. Shovelnose sturgeon were collected using boat electrofishing and experimental gill nets, measured for fork length (FL) and wet weight, and sexed externally if possible. Size‐ and age‐at‐maturity, absolute and relative fecundity, relative egg size, and gonadosomatic index (GSI) were determined for 49 female shovelnose sturgeon (range, 601‐ to 858‐mm FL). Female shovelnose sturgeon reached sexual maturity at approximately 600 mm and age‐at‐maturity ranged from ages 6 to 12 (median age = 9). Relative fecundity ranged from 11 220 to 23 956 eggs kg?1 (mean = 18 156 eggs kg?1). Absolute fecundity ranged from 14 294 to 65 490 eggs female?1 (mean = 30 397 eggs female?1) and was positively related to FL (r2 = 0.76) and wet weight (r2 = 0.82). The number of eggs g?1 of ovary weight ranged from 72 to 170 (mean = 98 eggs g?1) and was negatively correlated with GSI. GSI values ranged from 9.4 to 27.2 (mean = 19.3) and were positively correlated to FL (r2 = 0.18). Our results increase our understanding of shovelnose sturgeon reproductive biology and recruitment dynamics and provide input for models to evaluate the effects of harvest on this species.  相似文献   

16.
Shovelnose sturgeon (Scaphirhynchus platorynchus, Rafinesque, 1820) in the Wabash River, Illinois/Indiana, USA, provide an important recreational sport and commercial caviar fishery. In fact, it is one of the last commercially viable populations for sturgeon roe harvest. Due to increased demand in the caviar trade and endangered species legislation that protect shovelnose sturgeon in only a portion of their range, efforts of the roe harvest market may continue to divert toward unprotected populations like the shovelnose sturgeon in the Wabash River. Previous studies have shown that increased harvest pressure in this species can affect the age‐at‐maturation and result in recruitment overfishing. Therefore, it is important to closely and continuously monitor commercially exploited populations. Over the past decade (2007–2016), 13,170 shovelnose sturgeon were sampled with boat electroshocking, hoop nets, drift nets, trotlines, and benthic electrified trawls. Captured fish ranged from 61 to 910 mm fork length (FL; mean = 668 mm), with very few fish less than 550 mm FL. Although fish were found to be in a healthy condition (mean relative weight = 87), there was a decrease in the mean condition over time. In addition, we saw declines in mean FL, weight of roe‐per‐fish, and size‐at‐maturity for female fish directly impacted by harvest. The decline of these population parameters, coupled with an increase in total annual mortality and a truncated age frequency distribution, suggest that harvest is negatively impacting the demographics and recruitment of shovelnose sturgeon in the Wabash River. Considering the downward trajectory of population dynamics and high estimates of mortality, their resiliency to continued harvest and environmental changes will be limited.  相似文献   

17.
Shovelnose sturgeon Scaphirhynchus platorynchus are one of the few sturgeon species that currently support sustainable commercial harvest. However, harvest closures for many Eurasian sturgeons have resulted in increased exploitation of this fishery, thereby raising concerns about the sustainability of shovelnose sturgeon resources. As a result, the maintenance of self‐sustaining shovelnose sturgeon populations will require the estimation of appropriate harvest levels. This study used an age‐structured population model to examine the effects of harvest (u = 0.15–0.75) and length restrictions on population abundance, mean length‐at‐harvest, biomass, yield, and reproductive potential of female shovelnose sturgeon in the upper Wabash River, Indiana. Model simulations for four hypothetical length‐restriction scenarios (610‐ to 813‐mm reverse slot limit, and a 610‐, 635‐, and 660‐mm minimum length limit) were compared to outputs with no restriction. All population parameters within each length‐restriction scenario declined with increases in harvest level. For each harvest level, all population parameters increased as length limits became more restrictive. The reverse slot limit and 610‐mm minimum length limit provided adequate protection to allow population parameters to increase through an annual harvest level of 0.55. However, these length restrictions were not sufficiently conservative to warrant implementation due to their similarity to length‐at‐maturity of female shovelnose sturgeon. The implementation of a 635‐mm minimum length limit would protect female shovelnose sturgeon from harvest rates >0.75, allow 92% of the females to remain available for harvest, and minimize short‐term (<30 years) declines in yield. Further, sensitivity and robustness analyses suggested that the 635‐mm minimum length limit would allow population parameters to increase even at the worst‐case scenario. As a result, the 635‐mm minimum length limit was recommended as the most appropriate regulation to promote conservation and sustainable harvest of shovelnose sturgeon in the upper Wabash River.  相似文献   

18.
Aim To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location Eastern United States. Methods Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south‐western Mississippi. Main conclusions The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre‐glacial Teays‐Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays‐Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre‐Pleistocene vicariance hypothesis.  相似文献   

19.
We developed an age‐structured population matrix model to perform population viability analysis for Lower Missouri River (LMR) shovelnose sturgeon (Scaphirhynchus platorynchus). We investigated potential effects of the commercial fishing moratorium put in place to help protect the similar‐appearing pallid sturgeon (S. albus). The model applies different components of total variance in life history parameters at different levels: sampling variance (parameter uncertainty) between model iterations; temporal variance (temporal environmental fluctuations) between time steps within iterations; and individual variance (individual differences) within each time‐step. The model predicted annual rates of population increase of 1.96% under historic fishing and 2.67% with removal of historic fishing. We identified combinations of fishing and harvest size restrictions that would permit a sustainable harvest of shovelnose sturgeon. Overall, the ban on commercial fishing of shovelnose sturgeon in the LMR due to similarity of appearance to pallid sturgeon should help the LMR shovelnose sturgeon population begin to rebound while decreasing any negative effects it may have had on pallid sturgeon populations.  相似文献   

20.
Shovelnose sturgeon Scaphirhynchus platorynchus are a large‐river fish distributed throughout the Mississippi River basin, including the lower 1,533 km of the Mississippi River where riverine habitat has been and continues to be modified for navigation and is a potential site for development of instream hydrokinetic electric power generation. Information about habitat use and preference is essential to future conservation efforts. Shovelnose sturgeon have previously been found to select particular habitat types, and these selected habitats vary seasonally; although these past analyses do not consider the selected habitats in a landscape context. We used ecological niche factor analysis (ENFA) that uses distributions of telemetry locations and environmental variables to model habitat suitability in a landscape context. We recorded 333 locations of shovelnose sturgeon during July–December 2013 that included periods of relatively high and low river stages. The ENFA analysis indicated high‐suitability locations were in or near deep water during both high and low river stages. During high river stages, high‐suitability locations were near island tip habitat, deep water, and steep bottom slope and far from main channel habitat. During low stages, high‐suitability locations were in or near deep water and main channel habitat and far from secondary channel and wing dike habitats. This landscape‐scale analysis supports seasonal shifts in habitat use and provides insights that can be used to inform habitat conservation and management to benefit shovelnose sturgeon in the lower Mississippi River and possibly other large rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号