首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Pallid sturgeon (Scaphirhynchus albus) captured in the Middle and Lower Mississippi River (i.e. below St. Louis, MO, USA) are morphologically very similar to shovelnose sturgeon (Scaphirhynchus platorynchus). Available empirical data are limited to a few studies based on low sample sizes from disjointed populations. Geneticists are currently searching for markers that will differentiate the two species, but the need for unequivocal species‐specific field characters remains. Continuation of commercial fishing for shovelnose sturgeon in some states necessitates an immediate means for accurate field identifications. Previous studies of lower basin river sturgeon classified individuals with simple morphometric character indices and interpreted intermediacy as interspecific hybridization. In this study, morphometric variation among Scaphirhynchus specimens from the Middle and Lower Mississippi River is examined for evidence of hybridization. Data are compared for large (>250‐mm standard length) hatchery‐reared and wild pallid specimens and wild shovelnose specimens. Specimens are compared using two morphometric character indices, two morphometric/meristic character indices and principal components analysis. Results indicate substantial morphological variation among pallid sturgeon below the mouth of the Missouri River. The amount of variation appears to decrease downstream in the Mississippi River. Sheared principal components analysis of morphometric data shows complete separation of shovelnose and pallid sturgeon specimens, whereas character indices indicate overlap. Both character indices and sheared principal components analysis demonstrate that pallid sturgeon in the Lower Mississippi River are morphologically more similar to shovelnose sturgeon than are pallids from the Upper Missouri River. This similarity, explained in previous studies as hybridization, may be the result of latitudinal morphometric variation and length‐at‐age differences between populations of the upper and lower extremes of the range.  相似文献   

2.
Sound production has been recently discovered in several species of Acipenser. Our work has focused on testing for sound production in species of sturgeon in the genus Scaphirhynchus. We discovered that pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon, S. albus produce sounds during the breeding season. These signals may be used as part of efforts to localize populations of sturgeon in the field, including the Alabama sturgeon, S. suttkusi.  相似文献   

3.
Microsatellite variation from 13 disomic loci is reported for a total of 208 individuals of the genus Scaphirhynchus. This includes 105 individuals of the pallid sturgeon (Scaphirhynchus albus) from the lower Mississippi River, 11 pallid sturgeon from the Upper Mississippi and Missouri rivers, 65 shovelnose sturgeon (S. platorynchus) from the lower Mississippi River, six Alabama sturgeon (S. suttkusi), and 21 individuals of sturgeon identified as intermediate between S. albus and S. platorynchus. Results indicate that all five of the above population/species units are significantly differentiated from one another based on pairwise FST estimates. Locus Spl‐7 was diagnostic for the Alabama sturgeon and serves to further differentiate this allopatric species from other Scaphirhynchus. Classification of genotypes with and without a priori designations failed to clearly delineate the species and intermediates in the latter case but was successful for the species but not in the intermediates in the former case. The presence of six unique alleles in five of the 21 morphologically ‘intermediate’ sturgeon examined requires additional evaluation but suggests that these individuals are possibly not the result of hybridization. We hope that raising these important issues will bring all stakeholders to the table to establish a concerted effort needed for both morphological and molecular analyses to adequately address the question of hybridization and the origin of the morphological variation in these fishes.  相似文献   

4.
We developed an age‐structured population matrix model to perform population viability analysis for Lower Missouri River (LMR) shovelnose sturgeon (Scaphirhynchus platorynchus). We investigated potential effects of the commercial fishing moratorium put in place to help protect the similar‐appearing pallid sturgeon (S. albus). The model applies different components of total variance in life history parameters at different levels: sampling variance (parameter uncertainty) between model iterations; temporal variance (temporal environmental fluctuations) between time steps within iterations; and individual variance (individual differences) within each time‐step. The model predicted annual rates of population increase of 1.96% under historic fishing and 2.67% with removal of historic fishing. We identified combinations of fishing and harvest size restrictions that would permit a sustainable harvest of shovelnose sturgeon. Overall, the ban on commercial fishing of shovelnose sturgeon in the LMR due to similarity of appearance to pallid sturgeon should help the LMR shovelnose sturgeon population begin to rebound while decreasing any negative effects it may have had on pallid sturgeon populations.  相似文献   

5.
Synopsis Scaphirhynchus albus and S. platorynchus were studied in Missouri during 1978–1979 to assess their distribution and abundance, to obtain information on their life histories, and to identify existing or potential threats to their survival. S. platorynchus was collected in substantial numbers (4355 specimens) at all 12 sampling stations in the Missouri and Mississippi rivers, while only 11 S. albus were captured from 6 stations. Twelve specimens identified in the field as hybrids between the two species were captured from 4 stations. Morphometric and meristic comparisons of presumed hybrids with the parent species, using cluster and principal components analyses, demonstrated intermediacy of most specimens identified in the field as hybrids. Aquatic insects comprised most of the diet of S. platorynchus and S. albus, but S. albus and the hybrids had consumed considerable quantities of fish. S. albus grew more rapidly than S. platorynchus, while the growth of hybrids was intermediate. Hybridization appears to be a recent phenomenon, resulting from man-caused changes in the big-river environment. Hybridization may be a threat to survival of S. albus in the study streams.  相似文献   

6.
We investigated the influence of substrate type, water depth, light, and relative water velocity on microhabitat selection in juvenile pallid (Scaphirhynchus albus) and shovelnose (Scaphirhynchus platorynchus) sturgeon. Individual sturgeon were placed in an 18 927 L elliptical flume, and their location was recorded after a 2‐h period. Data were analyzed using exact chi‐square goodness of fit tests and exact tests of independence. Both sturgeon species used substrate, depth, and light in similar proportions. (all comparisons; P > 0.05). Specifically, pallid and shovelnose sturgeon did not use substrate in proportion to its availability (pallid: P = 0.0026; shovelnose: P = 0.0199). Each species used sand substrate more and gravel substrate less than expected based on availability. Additionally, neither species used woody structure. Both species used deep areas in greater proportion than availability while shallow areas were used less than expected based on availability (pallid; P < 0.0001; shovelnose; P = 0.0335). Pallid and shovelnose sturgeon used very dark areas in greater proportion than expected based on availability; however, very light areas were used in lower proportion than expected (P < 0.0001). Overall, neither species changed their use of habitat in relation to a change in water velocity (pallid, all comparisons P > 0.05; shovelnose, all comparisons P > 0.05). This study is the first investigation of juvenile pallid and shovelnose sturgeon habitat selection in a large‐scale artificial stream system. Field studies of microhabitat selection by juvenile pallid and shovelnose sturgeon should be carried out to substantiate the results of this study, and to identify critical habitat for recovery and management of sturgeon species. Due to the extensive range, longevity, and migratory behavior of these fishes, proper management likely requires river improvements that provide sturgeon with access to a broad range of habitat conditions over time, including system‐wide habitat diversity; natural variation in flow, velocity, temperature, and turbidity; high water quality; a broad prey base; free‐flowing river sections which provide suitable spawning and rearing sites, as well as protection from recreational and commercial harvesting.  相似文献   

7.
From May 2001 to June 2002 Wildhaber et al. (2005) conducted monthly sampling of Lower Missouri River shovelnose sturgeon (Scaphirhynchus platorynchus) to develop methods for determination of sex and the reproductive stage of sturgeons in the field. Shovelnose sturgeon were collected from the Missouri River and ultrasonic and endoscopic imagery and blood and gonadal tissue samples were taken. The full set of data was used to develop monthly reproductive stage profiles for S. platorynchus that could be compared to data collected on pallid sturgeon (Scaphirhynchus albus). This paper presents a comprehensive reference set of images, sex steroids, and vitellogenin (VTG, an egg protein precursor) data for assessing shovelnose sturgeon sex and reproductive stage. This reference set includes ultrasonic, endoscopic, histologic, and internal images of male and female gonads of shovelnose sturgeon at each reproductive stage along with complementary data on average 17‐β estradiol, 11‐ketotestosterone, VTG, gonadosomatic index, and polarization index.  相似文献   

8.
The thermal response of pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon S. platorynchus embryos was determined at incubation temperatures from 8 to 26°C and 8 to 28°C, respectively. The upper and lower temperatures with 100% (LT100) embryo mortality were 8 and 26°C for pallid sturgeon and 8 and 28°C for shovelnose sturgeon. It was concluded that 12–24°C is the approximate thermal niche for embryos of both species. Generalized additive and additive‐mixed models were used to analyze survival, developmental rate and dry weight data, and predict an optimal temperature for embryo incubation. Pallid sturgeon and shovelnose sturgeon embryo survival rates were different in intermediate and extreme temperatures. The estimated optimal temperature for embryo survival was 17–18°C for both species. A significant interaction between rate of development and temperature was found in each species. No evidence was found for a difference in timing of blastopore, neural tube closure, or formation of an S‐shaped heart between species at similar temperatures. The estimated effects of temperature on developmental rate ranged from linear to exponential shapes. The relationship for rate of development to temperature was relatively linear from 12°C to 20°C and increasingly curvilinear at temperatures exceeding 20°C, suggesting an optimal temperature near 20°C. Though significant differences in mean dry weights between species were observed, both predicted maximum weights occurred at approximately 18°C, suggesting a temperature optimum near 18°C for metabolic processes. Using thermal optimums and tolerances of embryos as a proxy to estimate spawning distributions of adults in a river with a naturally vernalized thermal regime, it is predicted that pallid sturgeon and shovelnose sturgeon spawn in the wild from 12°C to 24°C, with mass spawning likely occurring from 16°C to 20°C and with fewer individuals spawning from 12 to 15°C and 21 to 24°C. Hypolimnetic releases from Missouri River dams were examined; it was concluded that the cooler water has the potential to inhibit and delay sturgeon spawning and impede embryo incubation in areas downstream of the dams. Further investigations into this area, including potential mitigative solutions, are warranted.  相似文献   

9.
Recovery efforts for the endangered pallid sturgeon (Scaphirhynchus albus) include supplementation of wild stocks with hatchery reared progeny. Identifying the extent of genetic stock structure, which has previously been detected in samples from the range extremes, will help to determine whether stock transfers might be harmful. DNA microsatellite genotypes were screened in pallid sturgeon from the upper Missouri River, lower Missouri River, middle Mississippi River and Atchafalaya River and analyzed using a combination of Bayesian model‐based and more traditional F‐statistic based methods to characterize genetic differentiation. Scaphirhynchus specimens were collected by researchers active in the recovery effort and genotypes were screened at 16 microsatellite loci. Because there is considerable genetic and morphological overlap between pallid sturgeon, shovelnose sturgeon, and their hybrids, a combination of morphological and genetic techniques were used to eliminate shovelnose and possible hybrids from the sample. Genetic differentiation was detected among samples (overall θ = 0.050, P = 0.001). Pairwise θ, genetic distances, and Bayesian assignment testing reveal that pallid sturgeon from the upper Missouri River are the most distinct group with pairwise comparisons of pallid sturgeon among all the remaining samples exhibiting lower θ values, higher genetic distances, and self assignment scores. Our results indicate that using local broodstock, when available, should be used for pallid sturgeon propagation. If local broodstock are not available, geographically proximate individuals would limit genetic differences between native and stocked individuals.  相似文献   

10.
The sturgeon genus Scaphirhynchus consists of threerecognized species. Pallid and shovelnose sturgeon (S. albusand S. platorynchus, respectively) are sympatric in theMissouri and lower Mississippi Rivers of the central United States. TheAlabama sturgeon (S. suttkusi) is endemic to the nearby MobileRiver drainage and is isolated geographically from the other twospecies. Pallid sturgeon and the extremely rare Alabama sturgeon arelisted as endangered under the US Endangered Species Act (ESA).In contrast, shovelnose sturgeon are relatively common and are notlisted. Despite these taxonomies and morphological evidence, somebiologists have questioned the genetic and taxonomic distinctions of thethree species, thus raising doubts concerning the validity of protectingpallid and Alabama sturgeon under the ESA. To investigate thesequestions, we compared a 436 base-pair sequence of the mitochondrial DNA(mtDNA) control region among the three species. We observed 16 mtDNAhaplotypes defined by 27 single base-pair substitutions (transitions)and one single base-pair insertion/deletion (indel) among 78individuals examined. The maximum sequence divergence among thosehaplotypes (2.06%) was less than values usually observed betweenfish species. However, Alabama sturgeon (n = 3) weredistinguished from the other two taxa (n = 75) by aunique base-pair substitution and haplotype, and pallid and shovelnosesturgeon at their northern range of natural sympatry (upper MissouriRiver) did not share any haplotypes. On the other hand, only frequencydifferences among shared haplotypes distinguished (P < 0.01)pallid and shovelnose sturgeon at their southern range of naturalsympatry (Atchafalaya River), and genetic distances between northern andsouthern localities for each species were nearly as large as thedistances between species. These latter results are consistent withseveral hypotheses, including reports (based on morphology) of putativenatural hybrids in the Atchafalaya River but not in the upper MissouriRiver. Overall, these mtDNA results indicate significant reproductiveisolation between pallid and shovelnose sturgeon in areas of naturalsympatry, and recent evolutionary divergence of Alabama sturgeon. ThesemtDNA results provide the first molecular genetic evidence fordistinguishing the three Scaphirhynchus species and, coupledwith morphological and biogeographic data, indicate that pallid andAlabama sturgeon should be evaluated as distinct species under theESA.  相似文献   

11.
Acipenseriformes (sturgeons and paddlefish) globally have declined throughout their range due to river fragmentation, habitat loss, overfishing, and degradation of water quality. In North America, pallid sturgeon (Scaphirhynchus albus) populations have experienced poor to no recruitment, or substantial levels of hybridization with the closely related shovelnose sturgeon (S. platorynchus). The Lower Missouri River is the only portion of the species’ range where successful reproduction and recruitment of genetically pure pallid sturgeon have been documented. This paper documents spawning habitat and behavior on the Lower Missouri River, which comprises over 1,300 km of unfragmented river habitat. The objective of this study was to determine spawning locations and describe habitat characteristics and environmental conditions (depth, water velocity, substrate, discharge, temperature, and turbidity) on the Lower Missouri River. We measured habitat characteristics for spawning events of ten telemetry-tagged female pallid sturgeon from 2008–2013 that occurred in discrete reaches distributed over hundreds of kilometers. These results show pallid sturgeon select deep and fast areas in or near the navigation channel along outside revetted banks for spawning. These habitats are deeper and faster than nearby river habitats within the surrounding river reach. Spawning patches have a mean depth of 6.6 m and a mean depth-averaged water-column velocity of 1.4 m per second. Substrates in spawning patches consist of coarse bank revetment, gravel, sand, and bedrock. Results indicate habitat used by pallid sturgeon for spawning is more common and widespread in the present-day channelized Lower Missouri River relative to the sparse and disperse coarse substrates available prior to channelization. Understanding the spawning habitats currently utilized on the Lower Missouri River and if they are functioning properly is important for improving habitat remediation measures aimed at increasing reproductive success. Recovery efforts for pallid sturgeon on the Missouri River, if successful, can provide guidance to sturgeon recovery on other river systems; particularly large, regulated, and channelized rivers.  相似文献   

12.
The pallid sturgeon (Scaphirhynchus albus) was not described until 1905, when it was commonly caught by commercial fishers. This species began to decline in the early 1900s presumably because of overharvest and habitat degradation. The U.S. Fish and Wildlife Service listed S. albus as an endangered species in 1990. Because S. albus live in deep, turbid rivers that are difficult to sample, very little is known about its reproductive timing and spawning habitat. The act of spawning has never been observed in nature. Captures of wild young S. albus verifying natural reproduction are rare, the last being a 4‐year‐old fish taken in 1978. In this paper, we describe the first collection of a larval S. albus from the wild and subsequent larval collections in the Mississippi River from 1998 to 2000 using a modified slingshot balloon trawl (the Missouri Trawl) designed to capture small fishes in deep, turbulent rivers. We captured larval Scaphirhynchus spp., including verified S. albus, in association with island habitats often in heavy detritus, especially at downstream tips. We postulate that Scaphirhynchus spp. spawned at the heads of islands upstream from where we collected larvae, but we cannot be certain. The capture of larval S. albus verifies reproduction possibly from the lower Missouri River to the upper and lower Mississippi River. However, we found no evidence of recruitment of S. albus from 1998 to 2000 as we were unable to capture juveniles after 374 trawl hauls that captured over 21 735 fish.  相似文献   

13.
Demographic models for the shovelnose (Scaphirhynchus platorynchus) and pallid (S. albus) sturgeons in the Lower Missouri River were developed to conduct sensitivity analyses for both populations. Potential effects of increased fishing mortality on the shovelnose sturgeon were also evaluated. Populations of shovelnose and pallid sturgeon were most sensitive to age‐0 mortality rates as well as mortality rates of juveniles and young adults. Overall, fecundity was a less sensitive parameter. However, increased fecundity effectively balanced higher mortality among sensitive age classes in both populations. Management that increases population‐level fecundity and improves survival of age‐0, juveniles, and young adults should most effectively benefit both populations. Evaluation of reproductive values indicated that populations of pallid sturgeon dominated by ages ≥35 could rapidly lose their potential for growth, particularly if recruitment remains low. Under the initial parameter values portraying current conditions the population of shovelnose sturgeon was predicted to decline by 1.65% annually, causing the commercial yield to also decline. Modeling indicated that the commercial yield could increase substantially if exploitation of females in ages ≤12 was highly restricted.  相似文献   

14.
We produced pallid sturgeon Scaphirhynchus albus embryos at five pre-hatch developmental stages and isolated and quantified genomic DNA from four of the stages using four commercial DNA isolation kits. Genomic DNA prepared using the kit that produced the largest yields and concentrations were used for microsatellite DNA analyses of 10–20 embryos at each of the five developmental stages. We attempted to genotype the hatchery-produced embryos at 19 microsatellite loci and confirmed reliable genotyping by comparing the microsatellite genotypes to those of known parents. Embryos at stages 5 and 8 did not produce reliable genotyping while those at stages 14, 24 and 33 did. We used the same DNA isolation method on 262 wild-caught acipenseriform embryos collected from the lower Yellowstone River. A total of 200 of the wild embryos were successfully identified to stages 8 to 34 and the rest could not be staged. Using a combination of single nucleotide polymorphism and microsatellite markers, 249 of the wild-caught embryos were genetically identified as paddlefish Polyodon spathula, five were identified as shovelnose sturgeon Scaphirhynchus platorynchus and eight failed to amplify. None were identified as pallid sturgeon. This study demonstrates that early-stage wild-spawned acipenseriform embryos can be genetically identified less than 24 h post-spawn. This methodology will be useful for recovery efforts for endangered pallid sturgeon and can be applied to other acipenseriform species.  相似文献   

15.
Sturgeon specimens encountered in the wild that exhibit visible signs of gross physical trauma often look to the naked eye to be in otherwise good condition. Visible morphological anomalies were observed in 9.1% of 176 pallid (Scaphirhynchus albus) and 4.6% of 4904 shovelnose (Scaphirhynchus platorynchus) sturgeon specimens captured in the Middle (mouth of Missouri River to mouth of Ohio River) and Lower (below mouth of Ohio River) Mississippi River from 1997 to 2004. Frequencies among the types of anomalies differed between the lower and middle river reaches. In the lower river, deformities from foreign objects (typically rubber bands) comprised almost one‐third of anomalies observed and may have contributed to other types of anterior injury which, if combined, would comprise the majority of lower river anomalies. In the middle river, nearly half of the observed anomalies involved damage to the caudal peduncle, usually a missing tail. Power regressions from length–weight relationships were compared for anomalous and non‐anomalous specimens and demonstrated no significant disparity, verifying the resiliency of river sturgeons.  相似文献   

16.
We quantified the bycatch of pallid sturgeon Scaphirhynchus albus in Tennessee's shovelnose sturgeon ( Scaphirhynchus platorynchus) fishery by accompanying commercial fishers and monitoring their catch on five dates in spring 2007. Fishers were free to keep or discard any sturgeon they collected in their gillnets and trotlines and we were afforded the opportunity to collect meristic and morphometric data and tissue samples from discarded and harvested specimens. Fishers removed 327 live sturgeon from their gear in our presence, of which 93 were harvested; we also obtained the carcasses of 20 sturgeon that a fisher harvested out of our sight while we were on the water with another fisher. Two of the 113 harvested sturgeon were confirmed pallid sturgeon based on microsatellite DNA analyses. Additionally, fishers gave us five, live pallid sturgeon that they had removed from their gear. If the incidental harvest rate of pallid sturgeon (1.8% of all sturgeon harvested) was similar in the previous two commercial seasons, at least 169 adult pallid sturgeon were harvested by commercial fishers in the Tennessee waters of the Mississippi River in 2005–2007. If fishers altered their behavior because of our presence (i.e. if they were more conservative in what they harvested), the pallid sturgeon take was probably higher when they fished unaccompanied by observers. While retrieving a gill net set the previous day, a fisher we were accompanying retrieved a gillnet lost 2 days earlier; this ghost net caught 53 sturgeon whereby one fish was harvested but most fish were dead, including one confirmed pallid sturgeon.  相似文献   

17.
The pallid sturgeon (Scaphirhynchus albus), which is protected under the US endangered species act, and shovelnose sturgeon (S. platorhynchus), which is legally harvested in some locations, are sympatric throughout the range of pallid sturgeon. There is considerable morphological overlap between the species making discrimination problematic. The inability to reliably differentiate between species across all life stages has hampered pallid sturgeon recovery efforts. Furthermore, the two species are believed to hybridize. This study used allele frequency data at multiple microsatellite loci to perform Bayesian and likelihood-based assignment testing and morphological measures and meristics to discriminate pallid, shovelnose, and putative hybrid sturgeons from the middle Mississippi River. Bayesian model-based clustering of the genetic data indicated that two natural genetic units occur in the region. These units correspond to morphologically identified pallid and shovelnose sturgeon. Some individuals were morphologically intermediate and many of these failed to strongly assign genetically as either pallid or shovelnose sturgeon, suggesting they may be hybrids. These data indicate that pallid sturgeon and shovelnose sturgeon are genetically distinct in the middle Mississippi River (F ST = 0.036, P < 0.0001) and suggest that hybridization between pallid sturgeon and shovelnose sturgeon has occurred in this region with genetic distance estimates indicating the greatest distance is between pallid and shovelnose sturgeon, while hybrid sturgeon are intermediate but closer to shovelnose. This study demonstrates that assignment testing with multiple microsatellite markers can be successful at discriminating pallid sturgeon and shovelnose sturgeon, providing a valuable resource for pallid sturgeon recovery and conservation.
A. W. SchreyEmail:
  相似文献   

18.
The objective of this study was to update information regarding the status of shovelnose sturgeon fisheries. Although a substantial amount of shovelnose sturgeon research has been conducted in the past decade, the study purpose was not to provide a comprehensive review of the literature; the primary interest was in the status, trends, and management of Scaphirhynchus platorynchus fisheries in North America. Biologists were surveyed in all 24 states within the native distribution of the species; results indicate that commercial harvest is currently permitted in eight states, recreational harvest is allowed in 13 states, and that regulations vary within rivers and jurisdictional boundaries. Although recreational exploitation of shovelnose sturgeon is thought to be low and not a significant threat to populations, commercial harvest is a major concern in states with a commercial fishery. In the last decade harvest has increased in all states with commercial shovelnose sturgeon fisheries, but recent implementation of regulations has decreased harvest in some states. Approximately half of the states with extant shovelnose sturgeon populations conduct routine monitoring of the species, and the understanding of shovelnose sturgeon populations is increasing.  相似文献   

19.
This study found that introgressive hybridization of the pallid sturgeon Scaphirhynchus albus with the common shovelnose sturgeon Scaphirhynchus platorynchus has probably occurred across the range of S. albus. Bayesian clustering found evidence of hybridization in all management units of S. albus. Some individuals were intermediate at both genetic and morphological characters, and some had discordant results. The results support introgressive hybridization throughout much of the range of S. albus, yet individuals consistent with being pure members of each species were detected in all management units. Simulations demonstrated that it would be very difficult to distinguish introgressed individuals from pure specimens after multiple generations of backcrossing with these microsatellite markers. Using hybrid or backcross fish as broodstock could artificially accelerate the loss of unique genetic variation in S. albus. Additional microsatellite loci or additional genetic markers, along with morphological data may be required to ensure that hybrid or backcross fish are not used. Introgressive hybridization requires at least two generations and generation lengths of S. albus are long, perhaps as long as 30 years. The proportion of individuals consistent with introgressive hybrid origins indicates that hybridization between S. albus and S. platorynchus probably has occurred for several generations and is not a recent phenomenon.  相似文献   

20.
Described is the sequence and timing of embryologic development of shovelnose sturgeon, (Scaphirhynchus platorynchus) reared at a constant temperature 20 ± 0.5°C. Artificially spawned, fertilized eggs were held in a recirculating system. Embryos were sampled hourly during the first 48 h of development and every 3 h thereafter. Embryos were viewed and imaged at 35× magnification. The first cleavage furrow appeared 2 h post‐fertilization; early (synchronous) cleavage was completed after 7 h. Blastulation concluded at 16 h when the dorsal blastopore lip formed. The slitlike blastopore appeared at 29 h, signifying the completion of gastrulation. At 33 h, the rudiments of the excretory system emerged, followed by closing of the neural tube at 36 h and formation of the s‐shaped heart at 60 h. The body continued to elongate with mass hatch occurring at 102 h. After hatch, larvae swam into the water column and drifted in the flow for approximately 2 days after which the larvae became positively rheotaxic. After expulsion of the pigment plug, the larvae began exogenous feeding and other structures continued to develop. Metamorphosis was completed after 26 days of development. Because the shovelnose sturgeon possesses developmental patterns similar to those of other sturgeon, we can use this species as a model for the closely related pallid and Alabama sturgeon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号