首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symbiosis of Medicago truncatula-Sinorhizobium meliloti is affected by phosphate (P) deficiency in the environment. Quorum sensing (QS) is a regulatory pathway in S. meliloti that controls various functions of free-living and symbiotic bacteria in response to phosphate availability and regulation is mediated by a periplasmic protein PstS, and also bacterial density. The quorum sensing pathway of S. meliloti, involves three genes named sinI, sinR and expR and also some bacterial auto-inducers such as N-acyl homoserine lactones (AHLs). In the current study, the expression of the different genes of quorum sensing and pstS were evaluated under 0.1, 0.5 and 2 mM P. The qRT-PCR results showed an increased expression of pstS and also the quorum sensing genes sinI and sinR but not expR, following phosphate starvation. Indeed, the enhanced level of sinR induces the expression of sinI that is responsible for the N-acyl homoserine lactones (AHL) production in S. meliloti. The different response of expR may be due to its negative control on sinR expression. In the symbiosis of M. truncatula-S. meliloti, it was shown that the concentration of phosphate in the medium alters the effective inoculating bacterial quorum (density). By increasing the phosphate concentration in the medium from 0.1 to 0.5 and 2 mM, considering the optimal plant growth and pink nodule (nitrogen-fixing) formation, the effective inoculating bacterial densities were 105, 107 and 109 CFU ml?1, respectively. Therefore, low phosphate concentrations can compensate for a low bacterial density by inducing the quorum sensing pathway and establishing a symbiosis. Conversely, bacterial density plays the main role in the formation of symbiosis at high phosphate concentrations.  相似文献   

2.
3.
4.
5.
6.
Intercellular communication by means of small signal molecules coordinates gene expression among bacteria. This population density-dependent regulation is known as quorum sensing. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti Rm1021 possesses the Sin quorum sensing system based on N-acyl homoserine lactones (AHL) as signal molecules. Here, we demonstrate that the LuxR-type regulator ExpR binds specifically to a target sequence in the sinRI locus in the presence of different AHLs with acyl side chains from 8 to 20 carbons. Dynamic force spectroscopy based on the atomic force microscope provided detailed information about the molecular mechanism of binding upon activation by six different AHLs. These single molecule experiments revealed that the mean lifetime of the bound protein-DNA complex varies depending on the specific effector molecule. The small differences between individual AHLs also had a pronounced influence on the structure of protein-DNA interaction: The reaction length of dissociation varied from 2.6 to 5.8 A. In addition, dynamic force spectroscopy experiments indicate that N-heptanoyl-DL-homoserine lactone binds to ExpR but is not able to stimulate protein-DNA interaction.  相似文献   

7.
8.
In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N‐acyl‐homoserine lactone (AHL)‐mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL‐producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL‐producing plants compared with wild‐type plants. The present data indicate that plant‐produced AHLs enhance disease resistance against this pathogen. Subsequent RNA‐sequencing analysis showed that the exogenous addition of AHLs up‐regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL‐producing and wild‐type plants were determined by quantitative real‐time polymerase chain reaction. These data showed that plant‐produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant‐produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.  相似文献   

9.
Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR‐type N‐acyl L‐homoserine (AHL) quorum sensing is common in Gram‐negative Proteobacteria, and many members of this group have additional quorum‐sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS‐dependent quorum sensing converges with LuxI‐dependent quorum sensing at the LuxR regulatory element. Both AinS‐ and LuxI‐mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI‐ and AinS‐dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI‐ and AinS‐mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non‐native AHL analogues can be used to non‐invasively and specifically modulate induction of symbiotic bioluminescence via LuxI‐dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.  相似文献   

10.
11.

Background  

The infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria.  相似文献   

12.
Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria, and several virulence genes of human pathogens are known to be controlled by AHLs. In this study, strains of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae, isolated from intensive care patients, were screened for AHL production by using AHL responsive indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1. Positive reactions were recorded for all 50 isolates of P. aeruginosa and 10 isolates of Acinetobacter baumannii with Agrobacterium tumefaciens NT1. Surprisingly, most P. aeruginosa isolates gave negative results with C. violaceum CV026 in contrast to previous reports. This suggests that the new isolates of P. aeruginosa either failed to make short chain AHLs or the level of the signal molecule is very low.  相似文献   

13.
Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N‐acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL‐producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL‐degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3‐oxo‐C6‐HSL), rhlI from Pseudomonas aeruginosa (C4‐HSL/C6‐HSL), vanI from V. anguillarum (3‐oxo‐C10‐HSL) and sulI from Sulfitobacter sp. BR1 (C4‐HSL, 3‐hydroxy‐C6‐HSL, C8‐HSL and 3‐hydroxy‐C10‐HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8‐HSL, 3‐oxo‐C10‐HSL and C12‐HSL) at concentrations similar to those found within natural biofilms (5 μm ) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL‐signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown.  相似文献   

14.
Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C6. Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.  相似文献   

15.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

16.
Aims: To assess the diversity in production of acylated homoserine lactones (AHLs) among Vibrio spp and related species. Methods and Results: A total of 106 isolates, with representatives of 28 Vibrio spp and related species, were investigated for the production of AHLs. For this, a rapid method for the screening of AHLs was developed based on the use of bacterial biosensors using a double‐layer microplate assay. At least one bacterial biosensor was activated in 20 species, Agrobacterium tumefaciens being the most frequently activated biosensor. One isolate of Vibrio anguillarum, Vibrio rotiferianus and Vibrio metschnikovii activated the Chromobacterium violaceum biosensor, which is not common among the Vibrionaceae family. For those species with more than one isolate, the biosensor activation profile was the same except for two species, V. anguillarum and V. metschnikovii, which varied among the different isolates. Conclusions: AHL production was observed in the majority of the studied species, with a diverse biosensor activation profile. Significance and Impact of the Study: The high diversity in AHL production is in consistence with the high diversity in ecological niches of the Vibrionaceae family. The absence of AHL detection in eight species warrants further work on their quorum‐sensing systems.  相似文献   

17.
Wang H  Zhong Z  Cai T  Li S  Zhu J 《Archives of microbiology》2004,182(6):520-525
Quorum-sensing is widespread among many prokaryotic lineages. In order to investigate quorum regulation in the plant bacterium Mesorhizobium huakuii which produces an N-acyl homoserine lactone (AHL) quorum signal, the Agrobacterium quorum-sensing regulator TraR was heterologously expressed in this bacterium. The resulting strains showed reduced AHL production in the supernatant compared to wild-type, but similar intracellular levels of AHLs were detected, suggesting that M. huakuii AHLs can be bound to intracellular TraR proteins and thus become unavailable for its own quorum systems. M. huakuii overexpressing TraR formed thinner biofilms than the wild-type, suggesting a role played by quorum-sensing in biofilm formation.Hui Wang and Zengtao Zhong contributed equally to this work.  相似文献   

18.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

19.
Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N‐acyl homoserine lactone (AHL) bacterial quorum‐sensing (QS) signals and alter QS‐regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal‐mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR‐stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal‐mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL‐producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS.  相似文献   

20.
SdiA of E. coli and Salmonella is a LuxR homolog that detects N-acyl homoserine lactones (AHLs). Most LuxR homologs function together with a cognate AHL synthase (a LuxI homolog), but SdiA does not. Instead, SdiA detects AHLs produced by other bacterial species. In this report, we performed a phylogenetic analysis of SdiA. The results suggest that one branch of the Enterobacteriaceae obtained a rhlR/rhlI pair by horizontal transfer. The Erwinia and Pantoea branches still contain the complete pair where it is known as expR/expI and phzR/phzI, respectively. A deletion event removed the luxI homolog from the remainder of the group, leaving just the luxR homolog known as sdiA. Thus ExpR and PhzR are SdiA orthologs and ExpI and PhzI are descendants of the long lost cognate signal synthase of SdiA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号