首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
Plants form their gametes late in somatic development and, as a result, often pass somatic mutations on to their progeny. Classic examples of this process are the germinal revertants of unstable, Ac/Ds transposon-induced kernel mutations in maize: frequent and early reversion events during somatic development are generally correlated with a high frequency of revertant gametes. We have characterized a Ds allele of the maize waxy(wx) gene, wx-m5:CS7, for which the correlation between somatic and germinal reversion frequencies no longer holds. The ability of wx-m5:CS7 (CS7) to produce revertant gametes is suppressed ∼100-fold in comparison with a second Ds allele, wx-m5:CS8 (CS8), which has an identical insertion at Wx and the same frequent and early somatic reversion pattern in endosperm. The excision of Ds from wx is not reduced 100-fold in the somatic tissues of CS7 plants as compared with CS8 plants. Suppressed formation of CS7 revertant gametes is independent of the Ac transposase source and is heritably passed to the embryos of progeny kernels; however, frequent and early somatic reversion is observed again in endosperms of these progeny kernels. This suppression appears to be caused by a dominant mutation in a trans-acting product that can suppress the germinal reversion of other Ds-induced alleles as well; the mutation is tightly linked to Wx but is not in the CS7 Ds itself. Taken together, the data suggest a novel mode of developmental control of Ac/Ds elements by the host plant, suppressing element excision in the shoot meristem. Received: 16 December 1996 / Accepted: 4 March 1997  相似文献   

3.
Plants form their gametes late in somatic development and, as a result, often pass somatic mutations on to their progeny. Classic examples of this process are the germinal revertants of unstable, Ac/Ds transposon-induced kernel mutations in maize: frequent and early reversion events during somatic development are generally correlated with a high frequency of revertant gametes. We have characterized a Ds allele of the maize waxy(wx) gene, wx-m5:CS7, for which the correlation between somatic and germinal reversion frequencies no longer holds. The ability of wx-m5:CS7 (CS7) to produce revertant gametes is suppressed ~100-fold in comparison with a second Ds allele, wx-m5:CS8 (CS8), which has an identical insertion at Wx and the same frequent and early somatic reversion pattern in endosperm. The excision of Ds from wx is not reduced 100-fold in the somatic tissues of CS7 plants as compared with CS8 plants. Suppressed formation of CS7 revertant gametes is independent of the Ac transposase source and is heritably passed to the embryos of progeny kernels; however, frequent and early somatic reversion is observed again in endosperms of these progeny kernels. This suppression appears to be caused by a dominant mutation in a trans-acting product that can suppress the germinal reversion of other Ds-induced alleles as well; the mutation is tightly linked to Wx but is not in the CS7 Ds itself. Taken together, the data suggest a novel mode of developmental control of Ac/Ds elements by the host plant, suppressing element excision in the shoot meristem.  相似文献   

4.
We report here the use of the maize transposable element Activator (Ac) to isolate a dicot gene. Ac was introduced into petunia, where it transposed into Ph6, one of several genes that modify anthocyanin pigmentation in flowers by affecting the pH of the corolla. Like other Ac-mutable alleles, the new mutation is unstable and reverts to a functional form in somatic and germinal tissues. The mutant gene was cloned using Ac as a probe, demonstrating the feasibility of heterologous transposon tagging in higher plants. Confirmation that the cloned DNA fragment corresponded to the mutated gene was obtained from an analysis of revertants. In every case examined, reversion to the wild-type phenotype was correlated with restoration of a wild-type-sized DNA fragment. New transposed Acs were detected in many of the revertants. As in maize, the frequency of somatic and germinal excision of Ac from the mutable allele appears to be dependent on genetic background.  相似文献   

5.
The waxy (wx) locus of maize encodes an enzyme responsible for the synthesis of amylose in endosperm tissue. The phenotype of the Dissociation (Ds) insertion mutant wx-m1 is characterized by endosperm sectors that contain different levels of amylose. We have cloned the Wx gene from this allele and from two germinal derivatives, S5 and S9, that produce intermediate levels of amylose. The Ds insertion in wx-m1 is in exon sequences, is 409 bp in length and represents an example of a class of Ds elements that are not deletion derivatives of the Activator (Ac) controlling element. The two germinal derivatives, S5 and S9, lack the Ds element but contain an additional 9 and 6 bp, respectively, at the site of Ds insertion. The level of Wx mRNA and Wx protein in S5 and S9 is essentially the same as in normal endosperm tissue but Wx enzymatic activity is reduced. Thus, the lesions in S5 and S9 lead to the addition of amino acids in the Wx protein, resulting in Wx enzymes with altered specific activities. This work supports the notion that the maize transposable elements may serve a function in natural populations to generate genetic diversity, in this case, proteins with new enzymatic properties.  相似文献   

6.
Three characteristics of standard Mutator lines reflect developmental regulation: new mutants usually involve single gametes, somatic excision is restricted to terminal cell divisions during tissue development, and germinal excision is rare. By selection for earlier (larger) somatic sectors in the aleurone, a Mutator line was identified that exhibits a dramatic elevation in somatic excision frequency during the first three nuclear divisions of the endosperm and more than a 10-fold increase in germinal reversion from the bzl::Mul reporter gene. The programming of early sectoring is dominant in crosses with Mutator lines containing diverse reporter alleles. Germinal reversion is biased 5- to 10-fold for events through the pollen compared to the ear. The timing of germinal excision in the tassel is late because somatic excision sectors in the anthers are small; however, 98% of the germinal revertants are concordant. These observations indicate that in the early sectoring line Mu excision usually occurs before the mitotic divisions that separate gametic nuclei and may be restricted to the early stages of microsporogenesis. © 1992 Wiley-Liss, Inc.  相似文献   

7.
Developmental and genetic aspects of Mutator excision in maize   总被引:4,自引:0,他引:4  
The regulation of excision of Mu elements of the Mutator transposable element family of maize is not well understood. We have used somatic instability of Mu receptor elements from the Bronze 1 and Bronze 2 loci to monitor the frequency and the timing of excision of Mu elements in several tissues. We show that spot size in the aleurone of a bz2::mu1 stock varies between one to approximately 256 cells. This indicates that excision events begin eight divisions prior to full aleurone differentiation and end after the last division of the aleurone. We show that excision is equally biased for late events in all other tissues studied. A locus on chromosome 5 has been identified that affects spot size, possibly by altering the timing of Mu excision. Using somatic excision as an assay of Mutator activity, we found that activity can change in small sectors of the tassel; however, there are no overall activity changes in the tassel during the period of pollen shedding. We also report the recovery of germinal revertants for the bz1::mu1 and bz2::mu1 alleles. One of these revertant alleles was characterized by Southern blot analysis and found to be similar to the progenitor of the mutable allele.  相似文献   

8.
9.
The r locus of maize regulates anthocyanin synthesis in various tissues of maize through the production of helix-loop-helix DNA binding proteins capable of inducing expression of structural genes in the anthocyanin biosynthetic pathway. The complex r variant, R-r:standard (R-r), undergoes frequent mutation through a variety of mechanisms including displaced synapsis and crossing over, and intrachromosomal recombination. Here we report a new mechanism for mutation at the R-r complex: insertion of a novel family of transposable elements. Because the elements were first identified in the R-p gene of the R-r complex, they have been named P Instability Factor (PIF). Two different PIF elements were cloned and found to have identical sequences at their termini but divergent internal sequences. In addition, the PIF elements showed a marked specificity of insertion sites. Six out of seven PIF-containing derivatives examined had an element inserted at an identical location. Two different members of the PIF element family were identified at this position. The seventh PIF-containing derivative examined had the element inserted at a distinct position within r. Even at this location, however, the element inserted into a conserved target sequence. The timing of PIF excision is unusual. Germinal excision rates can range up to several percent of progeny. Yet somatic sectors are rare, even in lines exhibiting high germinal reversion rates.  相似文献   

10.
Molecular identification and isolation of the Waxy locus in maize   总被引:43,自引:0,他引:43  
M Shure  S Wessler  N Fedoroff 《Cell》1983,35(1):225-233
  相似文献   

11.
12.
M. Alleman  J. L. Kermicle 《Genetics》1993,135(1):189-203
The R gene regulates the timing and tissue-specificity of anthocyanin deposition during maize development. The Ac/Ds system of transposable elements was used to induce insertional mutants of the R-sc:124 allele during two cycles of mutagenesis. Of 43 unstable, spotted-aleurone mutants generated, 42 contain inserts of the Ds6 transposable element differing only in the position and orientation of the element. The remaining mutant, r-sc:m1, contained an insert of a Ds element of the approximate size of the Ds1 transposable element. The patterns of somatic variegation of these mutants, resulting from excision of Ds, define a spectrum of phenotypes ranging from sparse to dense variegation. The sparsely variegated mutants produce few germinal revertants but relatively many stable null derivative alleles; densely variegated mutants produce many germinal revertants and few stable null derivatives. Molecular analysis shows that the sparsely variegated alleles are caused by Ds6 insertions in protein coding regions of R-sc:124 whereas the densely variegated mutants result from insertions in introns or in flanking regions of the gene. The excision rate of Ds6 from R, estimated as the proportion of R genomic DNA restriction fragments lacking the element, was uniform regardless of position, orientation or whether the element was inserted in R-sc:124 or another R allele. The excision rate was greater, however, for the mutable alleles involving the Ds element from r-sc:m1. These data indicate that, although the excision rates are uniform for a given Ds element, the somatic and germinal mutability patterns of alleles associated with that element vary widely and depend primarily on the position of the transposable element within coding or noncoding regions of the gene.  相似文献   

13.
Heterologous transposon tagging of the DRL1 locus in Arabidopsis.   总被引:15,自引:5,他引:10       下载免费PDF全文
I Bancroft  J D Jones    C Dean 《The Plant cell》1993,5(6):631-638
The development of heterologous transposon tagging systems has been an important objective for many laboratories. Here, we demonstrate the use of a Dissociation (Ds) derivative of the maize transposable element Activator (Ac) to tag the DRL1 locus of Arabidopsis. The drl1 mutant shows highly abnormal development with stunted roots, few root hairs, lanceolate leaves, and a highly enlarged, disorganized shoot apex that does not produce an inflorescence. The mutation was shown to be tightly linked to a transposed Ds, and somatic instability was observed in the presence of the transposase source. Some plants showing somatic reversion flowered and produced large numbers of wild-type progeny. These revertant progeny always inherited a DRL1 allele from which Ds had excised. Analysis of the changes in DNA sequence induced by the insertion and excision of the Ds element showed that they were typical of those induced by Ac and Ds in maize.  相似文献   

14.
Isolation of the transposable maize controlling elements Ac and Ds   总被引:50,自引:0,他引:50  
N Fedoroff  S Wessler  M Shure 《Cell》1983,35(1):235-242
  相似文献   

15.
Ogura K  Yamamoto MT 《Genetica》2003,119(3):229-235
The unstable white-S2 (wS2) allele of the white gene occurred spontaneously in the S2 strain of Drosophila simulans. This mutation was caused by insertion of the submariner element, a mariner-like element with an abnormal tandem duplication of the 5' inverted terminal repeat (ITR). Although it has an incomplete ITR, submariner excises efficiently. The rate of somatic reversion, estimated by the number of eye-color mosaic flies, was 79.9%, and the reversion frequency in the germline was 0.6%. The change to the 5' ITR contributes to make this transposon precise excision.  相似文献   

16.
The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis . A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2 , are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT:: Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represent a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis , and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.  相似文献   

17.
Two germinal and 16 somatic reversion events induced by the Enhancer (En) transposable element system at the wx-8::Spm-I8 allele of Zea mays were cloned and studied by sequence analysis. Excision of the Spm-I8 receptor element from the wx gene results in various mutant DNA sequences. This leads to altered gene products, some of which are still capable of restoring the wild-type phenotype. Possible 'foot-print' sequences that may have arisen by the excision of transposable elements were observed when intron sequences of the wild-type (wx+) and mutant (wx-m8) alleles of the wx gene were compared. The sequence divergence generated by visitation of a locus by plant transposable elements is discussed with respect to the molecular evolution of the new gene functions.  相似文献   

18.
Xiao YL  Li X  Peterson T 《Genetics》2000,156(4):2007-2017
The maize p1 gene regulates the production of a red pigment in the kernel pericarp, cob, and other maize floral tissues. Insertions of the transposable element Ac can induce recombination between two highly homologous 5.2-kb direct repeat sequences that flank the p1 gene-coding region. Here, we tested the effects of the Ac insertion site and orientation on the induction of recombination at the p1 locus. A collection of unique p1 gene alleles was used, which carry Ac insertions at different sites in and near the p1 locus, outside of the direct repeats, within the direct repeat sequences, and between the direct repeats, in both orientations. Recombination was scored by the numbers of colorless pericarp sectors (somatic frequency) and heritable mutations (germinal frequency). In both the somatic and germinal tests, the frequency of homologous recombination is significantly higher when Ac is inserted between the direct repeats than when Ac is inserted either within or outside the repeats. In contrast, Ac orientation had no significant effect on recombination frequency. We discuss these results in terms of the possible mechanisms of transposon-induced recombination.  相似文献   

19.
20.
The waxy (Wx) locus of Zea mays was cloned from strains carrying the wild-type and wxm-8 mutant alleles. The receptor component of the Suppressor-Mutator (Spm) controlling element system in the wxm-8 allele was shown to be a 2 kb long insertion within the transcribed region of the Wx gene. The insertion, termed Spm-I8, is excised during somatic reversion events induced by the autonomous controlling element Enhancer (En), which is an equivalent to Spm. Integration of Spm-I8 into the Wx gene generates a 3-bp target site duplication. Spm-I8 has a 13 bp long inverted repeat at its termini. The ends of the element can be further folded to build a large double-stranded structure consisting of five perfectly matching double-stranded regions of 9–13 bp in length, interrupted by single-stranded loops. A comparison of the wild-type and wxm-8 alleles revealed two additional insertions 6 (insert-1) and 0.25 (insert-2) kb in length. No En-induced excision of insert-1 and insert-2 could be detected so far. There is remarkable structure and sequence homology between Spm-I8 and the transposable elements Tam1 and Tam2 of Antirrhinum majus at their termini, reflecting a possible evolutionary and/or functional relationship between transposons in different plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号