首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variable VHH domains of camelid single chain antibodies have been useful in numerous biotechnology applications due to their simplicity, biophysical properties, and abilities to bind to their cognate antigens with high affinities and specificity. Their interactions with proteins have been well‐studied, but considerably less work has been done to characterize their ability to bind haptens. A high‐resolution structural study of three nanobodies (T4, T9, and T10) which have been shown to bind triclocarban (TCC, 3‐(4‐chlorophenyl)‐1‐(3,4‐dichlorophenyl)urea) with near‐nanomolar affinity shows that binding occurs in a tunnel largely formed by CDR1 rather than a surface or lateral binding mode seen in other nanobody‐hapten interactions. Additional significant interactions are formed with a non‐hypervariable loop, sometimes dubbed “CDR4”. A comparison of apo and holo forms of T9 and T10 shows that the binding site undergoes little conformational change upon binding of TCC. Structures of three nanobody‐TCC complexes demonstrated there was not a standard binding mode. T4 and T9 have a high degree of sequence identity and bind the hapten in a nearly identical manner, while the more divergent T10 binds TCC in a slightly displaced orientation with the urea moiety rotated approximately 180° along the long axis of the molecule. In addition to methotrexate, this is the second report of haptens binding in a tunnel formed by CDR1, suggesting that compounds with similar hydrophobicity and shape could be recognized by nanobodies in analogous fashion. Structure‐guided mutations failed to improve binding affinity for T4 and T9 underscoring the high degree of natural optimization.  相似文献   

2.
Heavy chain only antibodies of camelids bind their antigens with a single domain, the VHH, which acquired adaptations relative to classical VHs to function in the absence of a VL partner. Additional CDR loop conformations, outside the canonical loop structures of VHs, broaden the repertoire of the antigen-binding site. The combined effects of part of the CDR3 that folds over the "former" VL binding site and framework-2 mutations to more hydrophilic amino acids, enhance the solubility of VHH domains and prevent VL pairing. cAbAn33, a VHH domain specific for the carbohydrate moiety of the variant surface glycoprotein of trypanosomes, has a short CDR3 loop that does not cover the former VL binding site as well as a VH-specific Trp47 instead of the VHH-specific Gly47. Resurfacing its framework-2 region (mutations Tyr37Val, Glu44Gly and Arg45Leu) to mimic that of a human VH restores the VL binding capacity. In solution, the humanised VHH behaves as a soluble, monomeric entity, albeit with reduced thermodynamic stability and affinity for its antigen. Comparison of the crystal structures of cAbAn33 and its humanised derivative reveals steric hindrance exerted by VHH-specific residues Tyr37 and Arg45 that prevent the VL domain pairing, whereas Glu44 and Arg45 are key elements to avoid insolubility of the domain.  相似文献   

3.
Recently, we described llama antibody fragments (VHH) that can neutralize human immunodeficiency virus, type 1 (HIV-1). These VHH were obtained after selective elution of phages carrying an immune library raised against gp120 of HIV-1 subtype B/C CN54 with soluble CD4. We describe here a new, family-specific approach to obtain the largest possible diversity of related VHH that compete with soluble CD4 for binding to the HIV-1 envelope glycoprotein. The creation of this family-specific library of homologous VHH has enabled us to isolate phages carrying similar nucleotide sequences as the parental VHH. These VHH displayed varying binding affinities and neutralization phenotypes to a panel of different strains and subtypes of HIV-1. Sequence analysis of the homologs showed that the C-terminal three amino acids of the CDR3 loop were crucial in determining the specificity of these VHH for different subtype C HIV-1 strains. There was a positive correlation between affinity of VHH binding to gp120 of HIV-1 IIIB and the breadth of neutralization of diverse HIV-1 envelopes. The family-specific approach has therefore allowed us to better understand the interaction of the CD4-binding site antibodies with virus strain specificity and has potential use for the bioengineering of antibodies and HIV-1 vaccine development.  相似文献   

4.
VHH is the binding domain of the IgG heavy chain. Some VHHs have an extremely long CDR3 that contributes to antigen binding. We studied the antigen binding ability of CDR3 by grafting a CDR3 from an antigen-binding VHH onto a nonbinding VHH. cAb-CA05-(1RI8), the CDR3-grafted VHH, had an antigen-binding ability. To find a human scaffold protein acceptable for VHH CDR3 grafting, we focused on the conserved structure of VHH, especially the N-terminal and C-terminal amino acid residues of the CDR3 loop and the Cys residue of CDR1. Human origin protein structures with the same orientation were searched in PDB and ubiquitin was selected. Ubi-(1RI8), the CDR3-grafted ubiquitin, had antigen-binding ability, though the affinity was relatively low compared to cAb-CA05-(1RI8). The thermodynamic parameters of Ubi-(1RI8) binding to HEWL were different from cAb-CA05-(1RI8). Hydrogen-deuterium exchange experiments showed decreased stability around the CDR3 grafting region of Ubi-(1RI8), which might explain the decreased antigen-binding ability and the differences in thermodynamic properties. We concluded that the orientation of the CDR3 sequence of Ubi-(1RI8) could not be reconstructed correctly.  相似文献   

5.
Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single‐domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full‐length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes.  相似文献   

6.
Single‐domain antibodies (sdAbs), the variable domains of camelid heavy chain‐only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti‐methotrexate, anti‐triclocarban and anti‐cortisol sdAbs revealed unexpected contributions of the non‐hypervariable “CDR4” loop, formed between β‐strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15‐acetyl‐deoxynivalenol (15‐AcDON), and to carbohydrates. We constructed and panned a phage‐displayed library in which CDR4 of the 15‐AcDON‐specific sdAb, NAT‐267, was extended and randomized. From this library, we identified one sdAb, MA‐232, bearing a 14‐residue insertion in CDR4 and showing improved binding to 15‐AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage‐displayed libraries in which the CDR4 and other regions of three hapten‐ or carbohydrate‐binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan‐binding specificities, we panned the library against four tumor‐associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten‐specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.  相似文献   

7.
旨在构建新疆双峰驼天然单域抗体库,及从中快速筛选VHH抗体.采用两种不同的抗原(溶菌酶和cAb-HEWL23)用天然文库进行筛选,成功筛选到了相应的抗体,并融溶菌酶筛选的VHH抗体(A3-1,A4-1和A10-1)进行表达和初步的ELISA检测.结果显示,A3-1和A10-1具有结合溶菌酶的能力.该方法简单方便、省时省力,可以快速从天然单城抗体库中筛选VHH抗体.  相似文献   

8.
BACKGROUND: Camelid serum contains a large fraction of functional heavy-chain antibodies - homodimers of heavy chains without light chains. The variable domains of these heavy-chain antibodies (VHH) have a long complementarity determining region 3 (CDR3) loop that compensates for the absence of the antigen-binding loops of the variable light chains (VL). In the case of the VHH fragment cAb-Lys3, part of the 24 amino acid long CDR3 loop protrudes from the antigen-binding surface and inserts into the active-site cleft of its antigen, rendering cAb-Lys3 a competitive enzyme inhibitor. RESULTS: A dromedary VHH with specificity for bovine RNase A, cAb-RN05, has a short CDR3 loop of 12 amino acids and is not a competitive enzyme inhibitor. The structure of the cAb-RN05-RNase A complex has been solved at 2.8 A. The VHH scaffold architecture is close to that of a human VH (variable heavy chain). The structure of the antigen-binding hypervariable 1 loop (H1) of both cAb-RN05 and cAb-Lys3 differ from the known canonical structures; in addition these H1 loops resemble each other. The CDR3 provides an antigen-binding surface and shields the face of the domain that interacts with VL in conventional antibodies. CONCLUSIONS: VHHs adopt the common immunoglobulin fold of variable domains, but the antigen-binding loops deviate from the predicted canonical structure. We define a new canonical structure for the H1 loop of immunoglobulins, with cAb-RN05 and cAb-Lys3 as reference structures. This new loop structure might also occur in human or mouse VH domains. Surprisingly, only two loops are involved in antigen recognition; the CDR2 does not participate. Nevertheless, the antigen binding occurs with nanomolar affinities because of a preferential usage of mainchain atoms for antigen interaction.  相似文献   

9.
A distinguishing feature of camel (Camelus dromedarius) VHH domains are noncanonical disulfide bonds between CDR1 and CDR3. The disulfide bond may provide an evolutionary advantage, as one of the cysteines in the bond is germline encoded. It has been hypothesized that this additional disulfide bond may play a role in binding affinity by reducing the entropic penalty associated with immobilization of a long CDR3 loop upon antigen binding. To examine the role of a noncanonical disulfide bond on antigen binding and the biophysical properties of a VHH domain, we have used the VHH R303, which binds the Listeria virulence factor InlB as a model. Using site directed mutagenesis, we produced a double mutant of R303 (C33A/C102A) to remove the extra disulfide bond of the VHH R303. Antigen binding was not affected by loss of the disulfide bond, however the mutant VHH displayed reduced thermal stability (Tm = 12°C lower than wild‐type), and a loss of the ability to fold reversibly due to heat induced aggregation. X‐ray structures of the mutant alone and in complex with InlB showed no major changes in the structure. B‐factor analysis of the structures suggested that the loss of the disulfide bond elicited no major change on the flexibility of the CDR loops, and revealed no evidence of loop immobilization upon antigen binding. These results suggest that the noncanonical disulfide bond found in camel VHH may have evolved to stabilize the biophysical properties of the domain, rather than playing a significant role in antigen binding.  相似文献   

10.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

11.
基于重链抗体构建的单域抗体研究进展   总被引:2,自引:0,他引:2  
崔华清  王清明   《生物工程学报》2005,21(3):497-501
在骆驼血清中存在天然的缺失轻链的重链抗体(heavy chainantibody ,HCAb) ,克隆重链抗体的可变区构建的只由一个重链可变区组成的单域抗体称为VHH抗体(variabledomainofheavychainofheavy chainantibody ,VHH)。研究发现,VHH抗体具有易表达、可溶性好、稳定性强等优点。另外,骆驼的重链抗体与人VH3家族抗体同源,对人VH3家族抗体的重链可变区进行类似VHH的特征性改造,可以使这些抗体在保持亲和力、特异性不变或者变化很小的情况下,优化抗体的其它性质。已有的研究表明VHH抗体作为一种小型化的基因工程抗体在基础研究、药物开发等领域有广阔的应用前景。  相似文献   

12.
基于抗原-抗体特异性反应的免疫学方法是黄曲霉毒素B1的常用检测方法。为制备针对AFB1的抗体,综合参考已报道的噬菌体文库筛选的抗AFB1单域重链抗体(variable domain of heavy chain of heavy chain antibody,VHH)序列,合成一条经密码子优化[适于大肠杆菌(Escherichia coli,E. coli)表达]的高同源性序列。在抗AFB1 VHH的CDR2和CDR3区引入部分随机突变,构建噬菌体抗体库。采用phage-ELISA技术,以AFB1O-OVA为包被抗原,淘选单域重链抗体库,经过4轮筛选,获得15株能与AFB1特异性结合的阳性克隆。以结合力最高的1株克隆为材料,扩增相应的VHH基因,构建表达质粒pET-22b-VHH。在E. coli BL21(DE3)中表达VHH,经间接竞争ELISA分析,获得的抗AFB1 VHH的灵敏度约为10μg/mL。  相似文献   

13.
目的:利用二代高通量测序技术,了解双峰骆驼循环B细胞重链抗体(HCAbs)组库的组成和基本特征。方法:通过分离骆驼外周血单核细胞(PBMC),提取m RNA,利用多重PCR和Illumina Mi-seq高通量测序技术对三头双峰骆驼的重链抗体可变区进行深度测序,分析了重链抗体组库V、J基因组成、重排时末端基因删除数和V-J基因配对率,以及CDR3的长度、香农多样性指数(Shannon index)、氨基酸组成分布等基本特征。结果:鉴定出平均每头骆驼130000条有效数据和67561条独特CDR3序列,HCAbs含量较高的V基因为IGHV1S45、IGHV1S50和IGHV1S52,J基因为IGHJ4和IGHJ6,所对应的V-J基因配对含量大于40%;CDR3的长度主要分布在10-30个氨基酸之间,含量较高的氨基酸为丙氨酸、甘氨酸和半胱氨酸;CDR3区域70%以上的平均长度为20个氨基酸长度,其中V基因长度为3 bp,J基因长度分布在1-18 bp。结论:双峰骆驼B细胞重链抗体组库由巨大的、不均匀分布(以少数VJ基因克隆占大多数)的和具有高度多样性的多克隆抗体构成,较长CDR3和富含丙氨酸、甘氨酸和半胱氨酸是HCAbs的重要特征。  相似文献   

14.
Camelids, camels and llamas, have a unique immune system able to produce heavy-chain only antibodies. Their VH domains (VHHs) are the smallest binding units produced by immune systems, and therefore suitable for biotechnological applications through heterologous expression. The recognition of protein antigens by these VHHs is rather well documented, while less is known about the VHH/hapten interactions. The recently reported X-ray structure of a VHH in complex with a copper-containing azo-dye settled the ability of VHH to recognize haptens by forming a cavity between the three complementarity-determining regions (CDR). Here we report the structures of a VHH (VHH A52) free or complexed with an azo-dye, RR1, without metal ion. The structure of the complex illustrates the involvement of CDR2, CDR3 and a framework residue in a lateral interaction with the hapten. Such a lateral combining site is comparable to that found in classical antibodies, although in the absence of the VL.  相似文献   

15.
Among mammals, camelids have a unique immunological system since they produce functional antibodies devoid of light chains and CH1 domains. To bind antigens, whether they are proteins or haptens, camelids use the single domain VH from their heavy chain (VHH). We report here on such a llama VHH domain (VHH-R9) which was raised against a hapten, the RR6 red dye. This VHH possesses the shortest complementarity determining region 3 (CDR3) among all the known VHH sequences and nevertheless binds RR6 efficiently with a K(d) value of 83 nM. However, the crystal structure of VHH-R9 exhibits a striking feature: its CDR3 and its last beta-strand (beta9) do not follow the immunoglobulin VH domain fold, but instead extend out of the VHH molecular boundary and associate with a symmetry-related molecule. The two monomers thus form a domain-swapped dimer which establishes further contacts with symmetry-related molecules and build a crystal-wide beta-sheet structure. The driving force of the dimer formation is probably the strain induced by the short CDR3 together with the cleavage of the first seven residues.  相似文献   

16.
Single domain camel antibodies: current status   总被引:19,自引:0,他引:19  
The antigen-binding capacity of the paired variable domains of an antibody is well established. The observation that the isolated heavy chains of anti-hapten antibodies retain some antigen-binding capacity in the absence of light chains led to attempts to obtain an even smaller antigen-binding unit in a VH format. Unfortunately, the poor solubility, the reduced affinity for the antigen and the irreproducible outcome showed that additional protein engineering would be required to successfully generate single-domain antibody fragments. By serendipity, it was discovered that this engineering is already performed continuously in nature. Part of the humoral immune response of camels and llamas is based largely on heavy-chain antibodies where the light chain is totally absent. These unique antibody isotypes interact with the antigen by virtue of only one single variable domain, referred to as VHH. Despite the absence of the VH-VL combinatorial diversity, these heavy-chain antibodies exhibit a broad antigen-binding repertoire by enlarging their hypervariable regions. Methods are described to tap the VHH repertoire of an immunised dromedary or llama. These VHH libraries contain a high titre of intact antigen-specific binders that were matured in vivo. Synthetic libraries of a 'camelised' human VH, a mouse VH or a camelid VHH scaffold with a randomised CDR3 could constitute a valid alternative to immune libraries to retrieve useful single-domain antigen binders. The recombinant VHH that are selected from such libraries are well expressed, highly soluble in aqueous environments and very robust. Some in vivo matured VHH were also shown to be potent enzyme inhibitors, and the low complexity of the antigen-binding site is an asset in the design of peptide mimetics. Because of their smaller size and the above properties, the VHH clearly offer added-value over conventional antibody fragments. They are expected to open perspectives as enzyme inhibitors and intrabodies, as modular building units for multivalent or multifunctional constructs, or as immuno-adsorbents and detection units in biosensors.  相似文献   

17.
The unpredicted spread of avian influenza virus subtype H7N2 in the world is threatening animals and humans. Specific and effective diagnosis and supervision are required to control the influenza. However, the existing detecting methods are laborious, are time-consuming, and require appropriate laboratory facilities. To tackle this problem, we isolated VHH antibodies against the H7N2 avian influenza virus (AIV) and performed an enzyme-linked immunosorbent assay (ELISA) to detect the H7N2 virus. To obtain VHH antibodies with high affinity and specificity, a camel was immunized. A VHH antibody library was constructed in a phage display vector pMECS with diversity of 2.8 × 109. Based on phage display technology and periplasmic extraction ELISA, H7N2-specific VHH antibodies were successfully isolated. According to a pairing test, two VHH antibodies (Nb79 and Nb95) with good thermal stability and specificity can recognize different epitopes of H7N2 virus. The capture antibody (Nb79) was biotinylated in vivo, and the detection antibody (Nb95) was coupled with horseradish peroxidase (HRP). Based on biotin–streptavidin interaction, a novel sandwich immune ELISA was performed to detect H7N2. The immunoassay exhibited a linear range from 5 to 100 ng/ml. Given the above, the newly developed VHH antibody-based double sandwich ELISA (DAS–ELISA) offers an attractive alternative to other diagnostic approaches for the specific detection of H7N2 virus.  相似文献   

18.
The antigen-binding capacity of the paired variable domains of an antibody is well established. The observation that the isolated heavy chains of anti-hapten antibodies retain some antigen-binding capacity in the absence of light chains led to attempts to obtain an even smaller antigen-binding unit in a VH format. Unfortunately, the poor solubility, the reduced affinity for the antigen and the irreproducible outcome showed that additional protein engineering would be required to successfully generate single-domain antibody fragments. By serendipity, it was discovered that this engineering is already performed continuously in nature. Part of the humoral immune response of camels and llamas is based largely on heavy-chain antibodies where the light chain is totally absent. These unique antibody isotypes interact with the antigen by virtue of only one single variable domain, referred to as VHH. Despite the absence of the VH–VL combinatorial diversity, these heavy-chain antibodies exhibit a broad antigen-binding repertoire by enlarging their hypervariable regions. Methods are described to tap the VHH repertoire of an immunised dromedary or llama. These VHH libraries contain a high titre of intact antigen-specific binders that were matured in vivo. Synthetic libraries of a ‘camelised’ human VH, a mouse VH or a camelid VHH scaffold with a randomised CDR3 could constitute a valid alternative to immune libraries to retrieve useful single-domain antigen binders. The recombinant VHH that are selected from such libraries are well expressed, highly soluble in aqueous environments and very robust. Some in vivo matured VHH were also shown to be potent enzyme inhibitors, and the low complexity of the antigen-binding site is an asset in the design of peptide mimetics. Because of their smaller size and the above properties, the VHH clearly offer added-value over conventional antibody fragments. They are expected to open perspectives as enzyme inhibitors and intrabodies, as modular building units for multivalent or multifunctional constructs, or as immuno-adsorbents and detection units in biosensors.  相似文献   

19.
Camelids can produce antibodies devoid of light chains and CH1 domains (Hamers-Casterman, C. et al. (1993) Nature 363, 446-448). Camelid heavy-chain variable domains (VHH) have high affinities for protein antigens and the structures of two of these complexes have been determined (Desmyter, A. et al. (1996) Nature Struc. Biol. 3, 803-811; Decanniere, K. et al. (1999) Structure 7, 361-370). However, the small size of these VHHs and their monomeric nature bring into question their capacity to bind haptens. Here, we have successfully raised llama antibodies against the hapten azo-dye Reactive Red (RR6) and determined the crystal structure of the complex between a dimer of this hapten and a VHH fragment. The surface of interaction between the VHH and the dimeric hapten is large, with an area of ca. 300 A(2); this correlates well with the low-dissociation constant of 22 nM measured for the monomer. The VHH fragment provides an efficient combining site to the RR6, using its three CDR loops. In particular, CDR1 provides a strong interaction to the hapten through two histidine residues bound to its copper atoms. VHH fragments might, therefore, prove to be valuable tools for selecting, removing, or capturing haptens. They are likely to play a role in biotechnology extending beyond protein recognition alone.  相似文献   

20.
Whereas antibodies have demonstrated the ability to mimic various compounds, classic heavy/light-chain antibodies may be limited in their applications. First, they tend not to bind enzyme active site clefts. Second, their size and complexity present problems in identifying key elements for binding and in using these elements to produce clinically valuable compounds. We have previously shown how cAb-Lys3, a single variable domain fragment derived from a lysozyme-specific camel antibody naturally lacking light chains, overcomes the first limitation to become the first antibody structure observed penetrating an enzyme active site. We now demonstrate how cAb-Lys3 mimics the oligosaccharide substrate functionally (inhibition constant for lysozyme, 50 nM) and structurally (lysozyme buried surface areas, hydrogen bond partners, and hydrophobic contacts are similar to those seen in sugar-complexed structures). Most striking is the mimicry by the antibody complementary determining region 3 (CDR3) loop, especially Ala104, which mimics the subsite C sugar 2-acetamido group; this group has previously been identified as a key feature in binding lysozyme. Comparative simplicity, high affinity and specificity, potential to reach and interact with active sites, and ability to mimic substrate suggest that camel heavy-chain antibodies present advantages over classic antibodies in the design, production, and application of clinically valuable compounds. Proteins 32:515–522, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号