首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
以甘蔗品种'新台糖22号'为试验材料,在伸长初期以200 mg/L GA3进行叶面喷施处理,对照喷清水,研究GA3处理后甘蔗节间糖苷酶、过氧化物酶、过氧化氢酶的变化,以揭示赤霉素诱导甘蔗节间伸长与相关酶活性的关系.结果表明:(1)GA3处理的株高在各个时期显著高于对照,而且在处理后7、14和28 d分别比对照提高了17.32%、14.50%和8.35%,GA3处理引起甘蔗植株表现的高度优势一直保持到后期,节间伸长效果主要是在茎的中部(5~10节).(2)GA3处理后α-葡萄糖苷酶和α-甘露糖苷酶的活性较对照显著下降;POD和β-半乳糖苷酶的活性也略有下降;α-半乳糖苷酶、β-N-乙酰氨基已糖苷酶、过氧化氢酶的活性显著提高;β-葡萄糖苷酶的活性也有一定程度提高.由此推测,外源GA3主要通过调节α-葡萄糖苷酶活性、α-甘露糖苷酶、α-半乳糖苷酶、β-N-乙酰氨基已糖苷酶活性和过氧化氢酶,其次是POD、β-半乳糖苷酶和β-葡萄糖苷酶活性,最终达到节间伸长效果.  相似文献   

2.
生长前期叶面喷施乙烯利对甘蔗茎细胞几种酶活性的影响   总被引:3,自引:1,他引:2  
在甘蔗分蘖初期用乙烯利进行叶面喷施处理 ,并在不同的时期分别对蔗茎细胞质和细胞壁的几种代谢关键酶活性进行测定 ,结果表明 :适当浓度的乙烯利处理提高了整个生长期甘蔗茎细胞质的过氧化物酶活性、生长前中期甘蔗茎细胞质和细胞壁的 Ca2 +-ATP酶、细胞质的 Mg2 +-ATP酶活性和生长后期细胞质的多酚氧化酶活性 ,较高浓度的乙烯利处理普遍提高整个生长期甘蔗茎细胞质和细胞壁的 Ca2 +-ATP酶活性、细胞壁的 Mg2 +-ATP酶活性和旺盛生长期间细胞壁的过氧化物酶活性  相似文献   

3.
生长调节剂对离体银杏叶苯丙氨酸解氨酶活性的影响   总被引:5,自引:0,他引:5  
用6种生长调节剂诱导离体银杏(Ginkgo biloba Linn.)叶苯丙氨酸解氨酶(PAL)活性,结果表明:300mg·L-1ETP诱导作用最强,其动态诱导在处理4 h后最高;40 mg·L-1 2,4-D诱导效果最强,并有2个明显的诱导高峰;200mg·L-1CCC诱导作用最强,在处理8 h后出现诱导高峰;除100mg·L-1IAA处理组的酶活性比对照低外,其他浓度的IAA处理均比对照高,诱导作用最强的是70 mg·L-1IAA处理;除了100mg·L-1ABA处理使酶活性略有降低外,其他浓度的ABA处理都能诱导酶活性升高,以75 mg·L-1ABA诱导能力最强,在处理4 h后酶活性最大;4个浓度的GA处理中,仅75 mg·L-1GA处理组的酶活性高于对照,处理8 h后酶活性达到最大.结果说明诱导效果从高至低依次为:乙烯利(ETP)、2,4-D、矮壮素(CCC)、吲哚乙酸(IAA)、脱落酸(ABA)、赤霉素(GA).  相似文献   

4.
黄瓜幼苗用0.1~1 ppm表油菜素内酯(epiBR)处理1~3d后,下胚轴中过氧化物酶活性明显低于对照;随着处理浓度的增加和处理时间的延长,与对照之间的差别愈趋增大。当浓度高于1ppm时,过氧化物酶的活性不再继续降低。表油菜素内醋对过氧化物酶活性的这种抑制作用需经约1O h的滞后期。IAA氧化酶的活性变化与过氧化物酶相似,epiBR处理时间愈长酶活性增加愈趋缓慢。 经IAA处理的下胚轴,过氧化物酶和IAA氧化酶的活性变化与对照无明显差异。这提示油菜素内酯与IAA促进生长可能是通过不同的作用方式。  相似文献   

5.
乙烯对苹果果实细胞壁降解效应初探   总被引:3,自引:0,他引:3  
以陕西主栽苹果品种'秦冠'为试材,研究了不同浓度乙烯利以及加热处理下苹果果实中与细胞壁代谢相关酶的活性变化及其与细胞壁组分降解的关系.结果表明:乙烯对各细胞壁酶活性的促进效应因乙烯利施用浓度不同而异.乙烯利浓度由10 mg/L增至1 000 mg/L时,果胶甲酯酶(PME)、多聚半乳糖醛酸酶(PG)和纤维素酶(CS)的活性先逐渐增强,而后又被抑制;木聚糖(Xyl)没有受到明显影响.加热处理可增进乙烯利的作用,如在60℃时,PME、PG、CS、Xyl活性分别是对照的1.5、2.7、1.1和1.5倍.PG活性的显著增加同时引起了果实可溶性糖含量的显著升高,但其他酶活性变化与可溶性糖含量无直接相关.  相似文献   

6.
Spd浸种对盐胁迫下番茄(Solanum lycopersicum)幼苗的保护效应   总被引:3,自引:0,他引:3  
胡晓辉  杜灵娟  邹志荣 《生态学报》2009,29(9):5152-5157
通过水培试验,研究了100 mmol/L NaCl盐浓度下,0.25 mmol/L Spd浸种处理对两个番茄品种白果强丰(耐盐基因型)和江蔬14号(盐敏感基因型)植株干重、根冠比(R/T)、幼苗叶片和根系抗氧化酶活性及活性氧含量的影响.具体试验处理如下:(a) 对照(蒸馏水浸种+ 0 mmol/L NaCl),(b) NaCl (蒸馏水浸种+ 100 mmol/L NaCl),(c) Spd(0.25 mmol/L Spd浸种 +100 mmol/L NaCl).结果表明,在盐胁迫下,两个番茄品种幼苗叶片和根系内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性升高,H2O2含量和O·-2产生速率增高,幼苗生长受到抑制,幼苗地上部、地下部干重均明显低于对照,R/T增大,且江蔬14号的变化幅度大于白果强丰.Spd浸种处理降低了盐胁迫下番茄幼苗叶片和根系内O·-2产生速率和H2O2含量,进一步提高了SOD、POD和CAT活性,促进幼苗干重增加,缓解了盐胁迫对植株的伤害.与耐盐基因型番茄品种白果强丰相比,Spd浸种处理对盐敏感基因型番茄品种江蔬14号的作用效果更为明显.总之,Spd浸种处理通过提高盐胁迫下植株体内抗氧化酶活性,降低ROS水平来缓解盐胁迫对番茄幼苗的伤害,提高幼苗耐盐能力.  相似文献   

7.
研究了16 g/L甘露醇处理对小麦细胞再分化、细胞IAA氧化酶、IAA过氧化物酶、 谷胱甘肽转移酶和过氧化物酶活性的影响。结果表明,甘露醇处理使小麦细胞再生能力明显降低,引起细胞蛋白质含量、IAA过氧化物酶和GST活性明显降低;但使细胞IAA氧化酶和POD活性明显增高。  相似文献   

8.
甘露醇对小麦细胞IAA氧化酶过氧化物酶及GST活性的影响   总被引:1,自引:0,他引:1  
研究了16g/L甘露醇处理对小麦细胞再分化,细胞IAA氧化酶,IAA过氧化酶,谷胱甘肽转移酶和过氧化物酶活性的影响,结果表明,甘露醇处理使小麦细胞再生能力明显降低,引起细胞蛋白质含量,IAA过氧化物酶和GSP活性明显降低,但使细胞IAA氧化格格不入产POD活性明显增高。  相似文献   

9.
为了探讨脱落酸(ABA)对锁阳茎切口愈合及抗氧化酶活性的影响,测定了锁阳茎3个部位(上部、中部和下部)内源ABA含量和切口愈合能力(抗失水力)以及苯丙氨酸解氨酶(PAL)、过氧化物酶(SOD)、过氧化氢酶(CAT)及抗坏血酸过氧化物酶(APX)活性随切口愈合时间的变化。结果表明,内源ABA含量随切口愈合天数的增加整体呈上升趋势。外源ABA处理明显增强了锁阳茎3个部位的PAL活性及抗氧化酶活性,加速了锁阳茎切口愈合,减少失水也提高了其抗氧化能力。比较3个部位,各指标均呈现出上部高于中部,中部高于下部的趋势。  相似文献   

10.
黄瓜经300 mg*L-1硝酸银和200 mg*L-1乙烯利处理后,叶片中过氧化物酶(POD)和超氧化物歧化酶(SOD)两种同工酶的酶谱带数和酶活性均明显受到诱导,而过氧化氢酶(CAT)几乎不受影响.两种药剂处理的POD和SOD酶谱和活性变化有明显差异,硝酸银诱导两种酶带和活性高峰出现早,而乙烯利则能诱导更多的酶带数.两种药剂诱导POD和SOD有同时增强表达的效果.  相似文献   

11.
Twelve-day-old seedlings of pea (Pisum sativum L.) that were treated for 4 days by 20 and 100 micromol/l Cd(NO3)2 or CuSO4 showed a growth reduction in all organs. From root protein extracts, the activities of guaiacol peroxidase (GPX; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11), coniferyl alcohol peroxidase (CAPX), NADH oxidase, and indole-3-acetic acid (IAA) oxidase were measured in covalently--and ionically--[symbol: see text] bound cell wall, soluble, and microsomal membrane fractions. With the exception of 20 micromol/l Cu, metal treatments enhanced GPX activity in all fractions. Only IAA oxidase activity was metal-elevated in the covalently bound cell wall fraction, while the ionic one showed Cd stimulation for all assayed enzymic activities. These effects were not entirely observed in Cu-treated plants, since APX and IAA oxidase activities were only enhanced in this fraction. However, soluble extract showed stimulation of APX activity, while in the microsomal fraction metal exposure also increased the activities of CAPX and NADH oxidase. Differential responses of root cell fractions to the presence of cadmium and copper ions are discussed in regard to the contribution of their enzymic capacities in antioxidant, lignification, and auxin degradation pathways. Comparisons between metals and dose effects are also underlined.  相似文献   

12.
Mung bean hypocotyl cuttings were treated with indole-3-butyric acid (IBA), 3-(benzo[b]selenienyl)acetic acid (BSAA) and 5,6-dichloroindole-3-acetic acid methyl ester (5,6-Cl2-IAA-Me) at different concentrations, respectively. Each chemical produced the maximum number of adventitious roots at a different concentration. Compared with IBA treatment, 5,6-Cl2-IAA-Me and BSAA treatments significantly increased root numbers on hypocotyl cuttings at lower concentration, particularly of 5,6-Cl2-IAA-Me treatment. Combinations of paclobutrazol (PB) with either 5,6-Cl2-IAA-Me or BSAA significantly stimulated the production of more adventitious roots than either chemical alone or combined. Capillary electrophoresis analysis have shown that the levels of IAA, IBA and BSAA in IBA plus PB or BSAA plus PB treatments were higher than those of IBA or BSAA alone. It was suggested that the cause of the synergistic effect of IBA (or BSAA) plus PB treatment might be due to increased endogenous auxin level. The activities of peroxidase and IAA oxidase in the rooting zone coincided with root development, indicating that the activities of these two enzymes were positively correlated to rooting. Peroxidase and IAA oxidase activity in all treatments started 24 h and 12 h after cutting, respectively. It is suggested that the major role of IAA oxidase differed from that of peroxidase in adventitious root formation.  相似文献   

13.
Cytoplasmic and salt-extracted peroxidase and IAA oxidase activities were studied in Phaseolus vulgaris hypocotyls treated with gibberellic acid (GA, 200 μM), naphthyl acetic acid (NAA, 100 μM) and distilled water control (DW). Peroxidase activity was assayed with four hydrogen donors during the initial phase of hypocotyl elongation. Though peroxidase activity showed a decreasing trend with time in all the hydrogen donors studied; considerable variation with different hydrogen donors was observed. NAA had maximum peroxidase activity as compared to DW or GA treatment. The activity showed a clear inverse correlation with hypocotyl growth. IAA oxidase activity showed a similar trend with growth as peroxidase activity. A highly significant correlation was observed between peroxidase and IAA oxidase activities and high molecular weight xyloglucan content (P<0.001). Finally, the possible role of peroxidase and IAA oxidase activities in hypocotyl elongation growth is discussed.  相似文献   

14.
Aspen, Hami melon, soybean and tobacco calli were incubated in Miller's solid medium supplemented with IAA 4 mg/L and kinetin 0.5 mg/L. Activities of IAA-oxidase and peroxidase were determined at 0,5,10,15 and 25 days after incubation. The activities of IAA oxidase and peroxidase of Hami melon callus were found to be the highest and the tobacco was the lowest among the four different kinds of calli, both enzymes showed their peak value in 10 days after incubation. There were no change in pattern of peroxidase isoenzyme among the four kinds of calli during the incubation, but the activities of IAA-oxidase and its isoenzyme of Hami melon at bands A6, A7 and A8 were 3 to 17 folds higher than that of corresponding isoenzyme of other three kinds of calli.  相似文献   

15.
Changes in levels of IAA, phenolic compounds, peroxidase, polyphenol oxidase, and IAA oxidase activities in the corm and the apical bud of Crocus sativusL. during bud growth and development, with special emphasis on the flowering stage, were studied. In the bud, flower formation was accompanied by enhanced activities of peroxidase, polyphenol oxidase, IAA oxidase, and higher contents of phenolic compounds as well as lower levels of IAA. In the corm, during the flower formation, these enzymes showed an opposite behavior. Moreover, the contents of phenolics and IAA in the corm tissues during flower formation and growth were higher than at the other developmental stages. It may be concluded that the transition of saffron plants to flowering is correlated with peroxidase, polyphenol oxidase, and IAA oxidase. Furthermore, these enzymes might exert their roles in the regulation of flowering through their participation in IAA catabolism. The hypothesis of regulation of bud development by an interaction between phenolics and the enzymes involved in IAA catabolism is discussed.  相似文献   

16.
Peroxidase and polyphenol oxidase activities and peroxidase isozyme patterns were determined at different stages of hypocotyls of mung bean infected with Rhizoctonia solani. The effect of ethephon (2-chloroethyl phosphonic acid) has been studied. Peroxidase activity increased at 24 h after inoculation as compared with controls followed by a decline later. It increased at 120 h. Polyphenol oxidase activities increased after inoculation. Ethephon treatment increased the resistance to Rhizoctonia solani and enhanced peroxidase and polyphenol oxidase activities. Peroxidase isozyme pattern was found to change as a result of inoculation and ethephon treatment. The results indicated that ethephon-induced resistance was related to peroxidase and polyphenol oxidase activities.  相似文献   

17.
Ke D  Saltveit ME 《Plant physiology》1988,88(4):1136-1140
Russet spotting (RS) is a physiological disorder induced in iceberg lettuce (Lactuca sativa L.) by exposure to parts per million levels of ethylene at 5 ± 2°C. Ethylene induced phenylalanine ammonia-lyase and ionically bound peroxidase activities that correlated with development of RS symptoms. The ethylene-treated tissue had significantly higher lignin content than air control tissue with lignification localized in walls of RS-affected cells. Ethylene also caused the accumulation of the flavonoids (+)catechin and (−)epicatechin and the chlorogenic acid derivatives 3-caffeoyl-quinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. These soluble phenolic compounds were readily oxidized to brown substances by polyphenol oxidase isolated from RS tissue. Ethylene substantially increased ionically bound indole-3-acetic acid (IAA) oxidase activity, while IAA application greatly reduced ethylene-induced phenylalanine ammonia-lyase, peroxidase, and IAA oxidase activities, soluble phenolic content, and RS development.  相似文献   

18.
Treatment of bean cuttings with 4-chlororesorcinol (4-CR), known to increase the number of roots and extend their distribution, prevented the accumulation of free indol-3-yl-acetic acid (IAA) in the hypocotyls within 24 h after cutting preparation. In mung bean there was no change in the distribution (upper half vs. 1 ower half of the hypocotyl) of IAA within the hypocotyl as a result of the treatment. In bean cuttings the treatment with 4-CR prevented the accumulation of IAA in the bottom of the cutting. Oxidation of IAA as a measure of IAA oxidase activity in bean was enhanced appreciably by 4-chlororesorcinol. The level of abscisic acid in mung bean, on the other hand, remained 3–4 fold higher than in the control, yet still about 50% lower than the zero time level. In untreated mung bean cuttings the activity of peroxidase increased after cutting preparation. In contrast, the activity of peroxidase in 4-Cr-treated cuttings was consistently lower. In order to relate to the effect of exogenously applied auxin the level of peroxidase was measured also in indol-3-yl-butyric acid-treated cuttings. The overall peroxidase activity in IBA-treated cuttings was not affected. However, when assaying for the different isozymes the drop in peroxidase activity was most evident in the inducible basic isoperoxidases both in 4-CR and IBA treatments. It appears that the exposure to 4-CR exerts an effect that is similar to that of exogenously applied auxin, affecting the activity of basic peroxidases and enhancing the oxidation of endogenous IAA, thus allowing the organization of the primordia.Abbreviations ABA - abscisic acid - 4-CR - 4-chlororesorcinol - IAA - indol-3-yl-acetic acid - IBA - indol-3-yl-butyric acid  相似文献   

19.
Changes in IAA oxidase, and in cytoplasmic and ionically wall-bound peroxidase activities were studied in the developing fibres of three cotton cultivars ( Gossypium hirsutum L. cv. Gujarat-67, cv. Khandwa-2 and G. herbaceum L. cv. Digvijay), designated as long, medium and short staple cultivars, respectively. In all the three cultivars IAA oxidase activity was low during the fibre elongation phase, while the activity increased significantly during the secondary thickening phase. The increase in IAA oxidase activity in the three cultivars showed close correspondence with their respective total period of elongation. No relationship between cytoplasmic peroxidase activity and fibre development was discernible. The ionically bound wall peroxidase activity, however, recorded low levels during the elongation phase and higher levels during the secondary thickening phase. The role of wall peroxidase in cessation of elongation growth is discussed.  相似文献   

20.
In roots of sweet potato (Ipomoea batatas Lam. cv. Kokei 14),the metabolic response to wounding was remarkable only in theproximal side. We assumed that the polarity resulted from apolar movement of indole-3-acetic acid (IAA) produced in thecut surface (8). As the metabolic response was slight in thedistal side, the effect of IAA and the other plant hormoneson the development of various enzyme activities was examinedin this side. Increases in activities of L-phenylalanine ammonia-lyase,acid invertase, NADPHa2 : cytochrome c oxidoreductase, peroxidase,cytochrome c : O2 oxidoreductase and o-diphenol oxidase, whichdeveloped in response to wounding, were stimulated by the treatmentwith IAA. Gibberellic acid had a stimulative effect on the developmentof only acid invertase activity. Abscisic acid and kinetin hadlittle effect. The results strongly support our hypothesis thatIAA plays an important role in the metabolic response to wounding. (Received September 29, 1979; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号