首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n‐propyl gallate, n‐pentyl gallate, and n‐octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n‐octyl gallate > n‐pentyl gallate > n‐propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects.  相似文献   

2.
The objective of this study was to investigate the possibility of using octyl gallate alone or with organic biocides as a preservative against wood decay fungi. Antifungal activities of three antioxidants, propyl gallate, octyl gallate and butylated hydroxyltoluene (BHT) were tested against four wood decay fungi, Lenzites betulina, Trametes versicolor, Gloeophyllum trabeum and Laetiporus sulphureus. Octyl gallate was found to be the only active compound with IC50 values of 0.47, 0.16, 0.24 and 0.04 mM against L. betulina, T. versicolor, G. trabeum and L. sulphureus, respectively. A synergistic effect was also found when octyl gallate was combined with cinnamaldehyde. Results obtained herein demonstrated that octyl gallate by itself exhibited an excellent antifungal property and enhanced protection was further observed by combining it with cinnamaldehyde.  相似文献   

3.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu,Na,Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

4.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu.Na, Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

5.
This paper presents a new application for monolithic columns with low‐pressure chromatographic separation using an flow injection analysis configuration with chemiluminescent detection for the determination of a mixture of phenolic compounds: phloroglucinol, 2,4‐dihydroxybenzoic acid, salicylic acid, methyl paraben and n‐propyl gallate. The procedure consists of the separation of these compounds on a reverse‐phase ultra‐short monolithic column with pH 3.0 acetate buffer and 5% acetonitrile as carrier phase. The detection is based on a chemiluminescence measurement coming from Ce(IV)–Rhodamine 6G chemistry with the incorporation of two different chemiluminescent chemical conditions in the chromatographic setup in order to enhance the sensitivity for the different phenolic compounds. All separation and detection variables were optimized to propose a determination method. The analysis is performed in 280?s, with the sampling frequency being some 13 h?1. The calibration function is a double reciprocal function obtaining good results within two orders of magnitude. The limits of detection were 8.8 × 10 ?8 m (phloroglucinol), 2.7 × 10 ?8 m (2,4‐dihydroxybenzoic acid); 2.3 × 10 ?8 m (salicylic acid); 5.2 × 10 ?8 m (methyl paraben) and 4.1 × 10 ?6 m (n‐propyl gallate), and the relative standard deviations at a medium level of the linear range were 4.4% (phloroglucinol), 2.8% (2,4‐dihydroxybenzoic acid), 5.2% (salicylic acid), 3.6% (methyl paraben) and 6.8% (n‐propyl gallate). The method was applied and validated satisfactorily for the determination of these compounds in healthcare products, comparing the results against an HPLC reference method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The synthetic n-alkyl esters of gallic acid (GA), also known as gallates, especially propyl, octyl and dodecyl gallates, are widely employed as antioxidants by food and pharmaceutical industries. The inhibitory effects of GA and 15 gallates on Herpes Simplex Virus type 1 (HSV-1) and Human Immunodeficiency Virus (HIV-1) replication were investigated here. After a preliminary screening of these compounds, GA and pentyl gallate (PG) seemed to be the most active compounds against HSV-1 replication and their mode of action was characterized through a set of assays, which attempted to localize the step of the viral multiplication cycle where impairment occurred. The detected anti-HSV-1 activity was mediated by the inhibition of virus attachment to and penetration into cells, and by virucidal properties. Furthermore, an anti-HIV-1 activity was also found, to different degrees. In summary, our results suggest that both compounds could be regarded as promising candidates for the development of topical anti-HSV-1 agents, and further studies concerning the anti-HIV-1 activity of this group of molecules are merited.  相似文献   

7.
The peroxidation of human erythrocytes induced by peroxyl radical initiator and its inhibition by several gallate esters (e.g., propyl, methyl, ethyl) and Trolox (a more polar analogue of vitamin E) have been studied. The antioxidant activity was determined on erythrocytes against hemolysis generated by a thermal activator, 2,2'-azobis-(2-amidinopropane)dihydrogenchloride. It was found that propyl gallate and its two analogues were more effective than Trolox in preventing cell lysis. However, the combination of gallate esters and Trolox produced a protective effect exceeding the arithmetic sum of their individual contributions. These perceived synergisms occur at more than one level of Trolox at a given level of a gallate ester.  相似文献   

8.
The ability of 19 structural analogs of propyl gallate to inhibit purified soybean seed (Glycine max [L.] Merr. var. Ransom) lipoxygenase-2 (EC 1.13.11.12) was determined. The results indicate that the o-dihydroxy and not the ester function of propyl gallate is essential for inhibition of lipoxygenase. Catechol thus represents the minimum inhibitory structure. Among those compounds possessing an o-dihydroxy function, the Ki′ for inhibition of lipoxygenase is directly related to the lipophilicity of the inhibitor as measured by the octanol-water partition coefficient. The structural features of propyl gallate necessary for inhibition of lipoxygenase were found to differ from those required for inhibition of the plant mitochondrial alternative pathway. This further supports the concept that the alternative oxidase and lipoxygenase are functionally distinct species.  相似文献   

9.
The effects of gallic acid, methyl gallate, propyl gallate and tannic acid on cell growth, protein synthesis, photosynthesis, membrane function and metabolic activity of Nostoc sp. strain MAC were quantitatively investigated. Treatment of MAC with 1/2 inhibitory concentrations of tannic acid and related compounds resulted in a severe decline in biological production. Chlorophyll a and c-phycocyanin syntheses were inhibited by over 90%. Glutamine synthetase and nitrate reductase activities were suppressed by at least 45% and 56%, respectively. The percentage inhibition of total cell yield was around 40%, whereas that of total protein was around 80%. In addition, cellular potassium loss was 2–5 times that of control cultures and was accompanied by a loss in phosphate of about 1.2 times that of control cultures. However, gallic acid did not inhibit c-phycocyanin synthesis, nor did tannic acid or propyl gallate inhibit the activity of glutamine synthetase. Methyl gallate had no effect on electrolyte efflux. The control of biomass accumulation in relation to the production of off-flavor compounds in cyanobacteria by natural tannin compounds may have important aquacultural implications. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The appearance of the activity of the cyanide insensitive, alternative oxidase (AOX), pathway of oxygen uptake was followed in seeds of Orobanche aegyptiaca during conditioning. The pathway becomes operative during conditioning, up to day three as determined by inhibition of oxygen uptake of the seeds by propyl gallate. At the same time an increasing percentage of oxygen uptake is insensitive to cyanide and an increased oxygen uptake, responsive to propyl gallate, is induced by brief salicylic acid treatment of seeds. By day six of conditioning, these responses decrease and the AOX pathway could not be detected in germinating seeds, after treatment with a germination stimulant. These results were confirmed by following the reaction of extracts of fractions enriched with mitochondria from the conditioned seeds, using a specific antibody against AOX. Treatment of the seeds with inhibitors of AOX during conditioning significantly inhibited their subsequent germination. Addition of hydrogen peroxide after 4 and 7 days of conditioning resulted in reduced germination. In addition treatment of seed with propyl or octyl gallate during conditioning reduced the infection of tomato plants by Orobanche seeds and the development of tubercles of the parasite on the host roots. These results together indicate that the operation of AOX during conditioning has a significant function on the subsequent germination behaviour and pathogenicity of the root parasite. Some potential practical applications of these findings are discussed.  相似文献   

11.
Biomembrane interactions of flavonoids and alkyl gallates were investigated using transport studies on Caco-2 cells and membrane affinity experiments in phospholipid vesicles. Flavone was rapidly absorbed across the cell monolayer (P(app),380 x 10(-6) cm/s), whereas efficient uptake but no apical to basolateral transport was observed with the flavonoids with higher degree of hydroxylation (e.g., quercetin and luteolin). The transport of alkyl gallates was governed by the length of the alkyl chain, i.e., methyl and propyl gallate were absorbed while octyl gallate showed cellular uptake but no transport. Flavonoids with several hydroxyl groups exhibited highest affinity for vesicle membranes, partition coefficients being 7.1 and 7.5 microM for luteolin and quercetin, respectively. In conclusion, the degree of hydroxylation, molecular configuration, and length of the side chain of flavonoids and alkyl gallates seem to have a highly important impact on their membrane affinity as well as on their permeability characteristics in Caco-2 cells.  相似文献   

12.
The plastid terminal oxidase (PTOX) encoded by the Arabidopsis IMMUTANS gene was expressed in Escherichia coli cells and its quinone/oxygen oxidoreductase activity monitored in isolated bacterial membranes using NADH as an electron donor. Specificity for plastoquinone was observed. Neither ubiquinone, duroquinone, phylloquinone nor benzoquinone could substitute for plastoquinone in this assay. However, duroquinol (fully reduced chemically) was an accepted substrate. Iron is also required and cannot be substituted by Cu(2+), Zn(2+) or Mn(2+). This plastoquinol oxidase activity is independent of temperature over the 15-40 degrees C range but increases with pH (from 5.5 to 9.0). Unlike higher plant mitochondrial alternative oxidases, to which PTOX shows sequence similarity (but also differences, especially in a putative quinone binding site and in cysteine conservation), PTOX activity does not appear to be regulated by pyruvate or any other tested sugar, nor by AMP. Its activity decreases, however, with increasing salt (NaCl or KCl) concentration. Various quinone analogues were tested for their inhibitory activity on PTOX. Pyrogallol analogues were found to be inhibitors, especially octyl gallate (I50 = 0.4 microM ) that appears far more potent than propyl gallate or gallic acid. Thus, octyl gallate is a useful inhibitor for future in vivo or in organello studies aimed at studying the roles of PTOX in chlororespiration and as a cofactor for carotenoid biosynthesis.  相似文献   

13.
Caffeic acid and some of its derivatives such as caffeic acid phenetyl ester (CAPE) and octyl caffeate are potent antioxidants which present important anti-inflammatory actions. The present study assessed the in vitro and in vivo effects of five caffeic acid derivatives (caffeic acid methyl, ethyl, butyl, octyl and benzyl esters) and compared their actions to those of CAPE. In the model of LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages, the pre-incubation of all derivatives inhibited nitrite accumulation on the supernatant of stimulated cells, with mean IC50 (μM) values of 21.0, 12.0, 8.4, 2.4, 10.7 and 4.80 for methyl, ethyl, butyl, octyl, benzyl and CAPE, respectively. The effects of caffeic acid derivatives seem to be related to the scavenging of NO, as the compounds prevented SNAP-derived nitrite accumulation and decreased iNOS expression. In addition, butyl, octyl and CAPE derivatives significantly inhibited LPS-induced iNOS expression in RAW 264.7 macrophages. Extending the in vitro results, we showed that the pre-treatment of mice with butyl, octyl and CAPE derivatives inhibited carrageenan-induced paw edema and prevented the increase in IL-1β levels in the mouse paw by 30, 24 and 36%, respectively. Butyl, octyl and CAPE derivatives also prevented carrageenan-induced neutrophil influx in the mouse paw by 28, 49 and 31%, respectively. Present results confirm and extend literature data, showing that caffeic acid derivatives exert in vitro and in vivo anti-inflammatory actions, being their actions mediated, at least in part by the scavenging of NO and their ability to modulate iNOS expression and probably that of other inflammatory mediators.  相似文献   

14.
G-6-Pase activity was investigated in the microsomal fraction from rat liver in the presence of carbon tetrachloride and/or propyl gallate (PG), reduced glutathione (GSH) and superoxide dismutase. Results obtained "in vitro" demonstrated that CCl4 induced a 60% inhibition of the microsomal enzyme activity. Moreover, a marked inhibition of G-6-Pase activity was found also when propyl gallate and reduced glutathione were added, at different concentrations, to incubation mixture. In addition, these drugs were unable to interfere with the dangerous effect exerted on the enzymatic activity by the haloalkane. Additional experiments carried out "in vivo" with propyl gallate produced evidence that intraperitoneal administration of the antioxidant was followed by a significant inhibition of G-6-Pase activity, while the damaging action of CCl4 was unaffected. Some possible explanations of these results are reported.  相似文献   

15.
本文应用荧光探剂ANS(1—苯胺—8萘磺酸)、NPN(N—苯基—1—萘胺)和DPH(1.6—二苯基—1.3.5—已三烯)观察没食子酸丙醋和没食子酸异丁酯对人红细胞膜流动性和相变温度以及Na~ -K~ ATP酶活性的影响.实验结果指出该两种化合物均能:(1)降低与膜结合的荧光探剂强度但不改变探剂在水相与膜相的分配比例:(2)降低膜脂的相变温度,增加膜的流动性;(3)抑制红细胞膜Na~ -K~ ATP酶活性;(4)标记红细胞膜的DPH偏振度随化合物浓度的增加而降低,膜的流动性增加.在给定的浓度范围内,两种化合物的效应表现为明显的量效关系与构效关系.从上述结果推测该两种化合物可能是通过改变膜脂结构、膜蛋白的脂类环境而调节膜的功能,成为其治疗疾病的机理之一.  相似文献   

16.
Antioxidants solubilized in micellar solutions can change micellar properties like the size and shape of micelles, critical micellar concentration (cmc) and viscosity. Interactions arising between antioxidants and the surfactant determine the locations of antioxidants and vice versa. The location and interaction are dependent on the type of both the antioxidant and surfactant. Influences of various antioxidants on the physical and structural properties were tested in micellar systems of cationic CTAB, non-ionic Brij 58 and anionic SDS. The antioxidants used to investigate the effects of gradually increasing lipophilicity were gallic acid (GA) and the gallate esters from methyl to octyl gallate (MG-OG). Hydroxy cinnamic acids (HCAs) like -coumaric acid (pC), caffeic acid (CA), ferulic acid (FA) and sinapic acid (SA) were employed to observe effects of functional groups like hydroxyl and methoxy groups. Micellar size and shape determined by small angle neutron scattering (SANS), viscosity and cmc were chosen to characterize the antioxidant influence. In Brij 58 systems propyl gallate (PG) did not affect the cmc or aggregation number but decreased micellar size slightly due to an intercalation of PG into the region of the polyoxyethylene chain and the first adjacent alkyl chain methylene groups. In SDS systems the micellar size and cmc decreased in the presence of PG. This was attributed to PG residing in the Stern layer. However, in CTAB systems micelles swelled at low PG concentration and in the presence of GA, while higher PG concentrations and more lipophilic antioxidants led to a sphere-to-rod transition with a simultaneous increase in viscosity and decrease in cmc. This revealed the intercalation of antioxidants in the palisade layer of CTAB micelles entering into strong interactions of electrostatic and hydrophobic origin. It could be demonstrated that the interactions became stronger the more lipophil an antioxidant is and the more hydroxyl groups are attached to the aromatic ring. Differences in the location and interaction of antioxidant and micelles are proposed as being responsible for the effectiveness of antioxidants.  相似文献   

17.
A series of 19 structural analogs of propyl gallate (3,4,5-trihydroxybenzoic acid propyl ester) were tested for their ability to inhibit the cyanide-insensitive, electron transfer pathway in isolated mung bean mitochondria. The results indicate that the trihydroxy substituent, not the ester, of propyl gallate is the structural feature of the molecule required to produce inhibition. Further, only one OH group, if it is located para to the ester moiety, will bring about specific inhibition. Of the compounds which contained the appropriate hydroxyl group, the lower the pKα of the hydroxyl group, the lower the observed inhibition constant (Ki′) for blocking the alternative pathway. Even though the observed Ki′ values varied over two orders of magnitude for the compounds tested, the calculated pH-independent, intrinsic inhibition constants (Ki) were markedly similar for all inhibitory compounds. The results indicate that a simple phenolate anion is the minimum structural feature required to observe specific inhibition of the alternative pathway and the more easily the anion can be formed, the better the observed inhibition. Similarities between the above compounds and the structural features associated with hydroxamic acids were also noted.  相似文献   

18.
植物中的多酚物质对超氧物自由基的清除作用   总被引:3,自引:0,他引:3  
芒果、番石榴、松、龙眼等叶片和绿茶中含有O2(超氧物自由基)的非酶促清除剂,仅0.5—1mg鲜重或0.29mg茶叶就相当一个SOD酶单位作用,热处理不能降低清除O2的能力.用显示酚类物质的喷洒剂(AgNO3-NH4OH)和显示SOD同工酶带的NBT法对电泳后的凝胶分别染色处理,对比显示结果,表明酚类物质与SOD活性物质有相似的电泳行为,叶片中的酚类物质可能为非酶促清除O2的组份.人工合成的酚类化合物(对硝基酚、间苯二酚、愈创木酚)和从植物中分离的鞣酸等,在体外均能有效地清除O2.  相似文献   

19.
Kim JH  Kang NJ  Lee BK  Lee KW  Lee HJ 《Mutation research》2008,638(1-2):175-183
Propyl gallate and its metabolite, gallic acid, are widely used as antioxidants in the food industry, but they have been shown to exhibit liver toxicity and enhance carcinogenesis. In the present study, we investigated the possible undesirable effects of propyl gallate and gallic acid on gap junctional intercellular communication (GJIC), inhibition of which is closely linked to carcinogenesis. Gallic acid and propyl gallate exhibited dose-dependent free-radical-scavenging activities as determined by 1,1-diphenyl-2-picrylhydrazyl- or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-radical-scavenging assays, and the free-radical-scavenging activity of gallic acid was stronger than that of propyl gallate. However, using WB-F344 rat liver epithelial cells, gallic acid inhibited GJIC in a dose-dependent manner, while propyl gallate had no significant effect compared with untreated controls. The gallic-acid-induced inhibition of GJIC was reversible, with a recovery of nearly 65% after 120 min. Gallic acid induced the phosphorylation of connexin 43 (Cx43) and phosphorylation of extracellular-signal-regulated kinase1/2 (ERK1/2). The gallic-acid-induced inhibition of GJIC was attenuated by treatment with mitogen-activated protein kinase kinase inhibitors (U0126 and PD098059). U0126 blocked the gallic-acid-induced phosphorylation of Cx43 and ERK1/2, indicating that the gallic-acid-induced inhibition of GJIC is mediated by phosphorylation of Cx43 via activation of ERK1/2. In addition, gallic-acid-induced inhibition of GJIC was protected by ascorbic acid and quercetin, which might represent a simple example of the different effects of natural antioxidants in carcinogenesis.  相似文献   

20.
Summary: Various bacteria capable of degrading aromatic ring structures were unable to utilize gallic acid, methyl, ethyl or propyl gallates as sole carbon sources for growth when tested in liquid and solid media. A bacterial isolate was obtained which degraded gallic acid but not methyl, ethyl or propyl gallates, although ellagic acid, a major spontaneous degradation product of the gallate esters, was utilized to a limited degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号