首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Pulvomycin inhibits protein synthesis by preventing the formation of the ternary complex between elongation factor Tu (EF-Tu) x GTP and aa-tRNA. In this work, the crystal structure of Thermus thermophilus EF-Tu x pulvomycin in complex with the GTP analogue guanylyl imino diphosphate (GDPNP) at 1.4 A resolution reveals an antibiotic binding site extending from the domain 1-3 interface to domain 2, overlapping the domain 1-2-3 junction. Pulvomycin binding interferes with the binding of the 3'-aminoacyl group, the acceptor stem, and 5' end of tRNA. Only part of pulvomycin overlaps the binding site of GE2270 A, a domain 2-bound antibiotic of a structure unrelated to pulvomycin, which also hinders aa-tRNA binding. The structure of the T. thermophilus EF-Tu x GDPNP x GE2270 A complex at 1.6 A resolution shows that GE2270 A interferes with the binding of the 3'-aminoacyl group and part of the acceptor stem of aa-tRNA but not with the 5' end. Both compounds, pulvomycin more markedly, hinder the correct positioning of domain 1 over domains 2 and 3 that characterizes the active form of EF-Tu, while they affect the domain 1 switch regions that control the EF-Tu x GDP/GTP transitions in different ways. This work reveals how two antibiotics with different structures and binding modes can employ a similar mechanism of action.  相似文献   

2.
The structure of a 1:1 molar complex between Escherichia coli elongation factor (EF) Tu-GDP and the cyclic thiazolyl peptide antibiotic, GE2270A, has been determined by X-ray diffraction analysis to a resolution of 2.35 A and refined to a crystallographic refinement factor of 20.6%. The antibiotic binds in the second domain of EF-Tu-GDP, making contact with three segments of amino acids (residues 215-230, 256-264, and 273-277). The majority of the protein-antibiotic contacts are van der Waals interactions. A striking feature of the antibiotic binding site is the presence of a salt bridge, not previously observed in other EF-Tu complexes. The ionic interaction between Arg 223 and Glu 259 forms over the antibiotic and probably accounts for the strong affinity observed between EF-Tu and GE2270A. Arg 223 and Glu 259 are highly conserved, but not invariant throughout the prokaryotic EF-Tu family, suggesting that the antibiotic may bind EF-Tu from some organisms better than others may. Superposition of the antibiotic binding site on the EF-Tu-GTP conformation reveals that one region of the antibiotic would form steric clashes with the guanine nucleotide-binding domain in the GTP, but not the GDP, conformation. Another region of the antibiotic binds to the same site as the aminoacyl group of tRNA. Together with prior biochemical studies, the structural findings confirm that GE2270A inhibits protein synthesis by blocking the GDP to GTP conformational change and by directly competing with aminoacyl-tRNA for the same binding site on EF-Tu. In each of the bacterial strains that are resistant to GE2270A, the effect of a site-specific mutation in EF-Tu could explain resistance. Comparison of the GE2270A site in EF-Tu with sequence homologues, EF-G and EF-1alpha, suggests steric clashes that would prevent the antibiotic from binding to translocation factors or to the eukaryotic equivalent of EF-Tu. Although GE2270A is a potent antibiotic, its clinical efficacy is limited by its low aqueous solubility. The results presented here provide the details necessary to enhance the solubility of GE2270A without disrupting its inhibitory properties.  相似文献   

3.
The antibiotic GE2270A prevents stable complex formation between elongation factor Tu (EF-Tu) and aminoacyl-tRNA (aatRNA). In Escherichia coli we characterized two mutant EF-Tu species with either G257S or G275A that lead to high GE2270A resistance in poly(Phe) synthesis, which at least partially explains the high resistance of EF-Tu1 from GE2270A producer Planobispora rosea to its own antibiotic. Both E. coli mutants were unexpectedly found to bind GE2270A nearly as well as wild-type (wt) EF-Tu in their GTP-bound conformations. Both G257S and G275A are in or near the binding site for the 3' end of aatRNA. The G257S mutation causes a 2.5-fold increase in affinity for aatRNA, whereas G275A causes a 40-fold decrease. In the presence of GE2270A, wt EF-Tu shows a drop in aatRNA affinity of at least four orders of magnitude. EF-Tu[G275S] and EF-Tu[G275A] curtail this drop to about two or one order, respectively. It thus appears that the resistance mutations do not prevent GE2270A from binding to EF-Tu.GTP and that the mutant EF-Tus may accommodate GE2270A and aatRNA simultaneously. Interestingly, in their GDP-bound conformations the mutant EF-Tus have much less affinity for GE2270A than wt EF-Tu. The latter is explained by a recent crystal structure of the EF-Tu.GDP.GE2270A complex, which predicts direct steric problems between GE2270A and the mutated G257S or G275A. These mutations may cause a dislocation of GE2270A in complex with GTP-bound EF-Tu, which then no longer prevents aatRNA binding as in the wt situation. Altogether, the data lead to the following novel resistance scenario. Upon arrival of the mutant EF-Tu.GTP.GE2270.aatRNA complex at the ribosomal A-site, the GTPase centre is triggered. The affinities of aatRNA and GE2270A for the GDP-bound EF-Tu are negligible; the former stays at the A-site for subsequent interaction with the peptidyltransferase centre and the latter two dissociate from the ribosome.  相似文献   

4.
Parmeggiani A  Nissen P 《FEBS letters》2006,580(19):4576-4581
Elongation factor Tu (EF-Tu), the carrier of aa-tRNA to the mRNA-programmed ribosome, is the target of four families of antibiotics of unrelated structure, of which the action is supported by two basic mechanisms. Kirromycin and enacyloxin block EF-Tu.GDP on the ribosome; pulvomycin and GE2270 A inhibit the interaction of EF-Tu.GTP with aa-tRNA. The crystallographic analysis has unveiled the structural background of their actions, explaining how antibiotics of unrelated structures and binding modes and sites can employ similar mechanism of action. The selective similarities and differences of their binding sites and the induced EF-Tu conformations make understand how nature can affect the activities of a complex regulatory enzyme by means of low-molecular compounds, and have proposed a suitable approach for drug design.  相似文献   

5.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

6.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

7.
The influence of kirromycin on the elongation factor Tu (EF-Tu) in its binary and ternary complexes was investigated. The equilibrium constant for the binding of the antibiotic to EF-Tu . GDP and EF-Tu . GTP was determined by circular dichroism titrations to be 4 x 10(6) M-1, and to EF-Tu . GTP . aa-tRNA by a combination of circular dichroism titrations and hydrolysis protection experiments to be 2 x 10(6) M-1. In the presence of kirromycin the binding of aminoacyl-tRNAs to EF-Tu . GTP is weakened by a factor of two. The antibiotic changes the conformation of the ternary complex in such a way that the aminoacyl moiety of the aminoacyl-tRNA is more accessible to the non-enzymatic hydrolysis. It is concluded that this structural alteration is responsible for the inhibitory action of the antibiotic.  相似文献   

8.
This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.  相似文献   

9.
The effects of GDP and of aurodox (N-methylkirromycin) on the affinity of elongation factor Tu (EF-Tu) for aminoacyl-tRNA (aa-tRNA) have been quantified spectroscopically by using Phe-tRNA(Phe)-Fl8, a functionally active analogue of Phe-tRNA(Phe) with a fluorescein dye convalently attached to the s4U-8 base. The association of EF-Tu.GDP with Phe-tRNA(Phe)-Fl8 resulted in an average increase of 33% in fluorescein emission intensity. This spectral change was used to monitor the extent of ternary complex formation as a function of EF-Tu.GDP concentration, and hence to obtain a dissociation constant, directly and at equilibrium, for the EF-Tu.GDP-containing ternary complex. The Kd for the Phe-tRNA(Phe)-Fl8.EF-Tu.GDP complex was found to average 28.5 microM, more than 33,000-fold greater than the Kd of the Phe-tRNA(Phe)-Fl8.EF-Tu.GTP complex under the same conditions. In terms of free energy, the delta G degree for ternary complex formation at 6 degrees C was -11.5 kcal/mol with GTP and -5.8 kcal/mol with GDP. Thus, the hydrolysis of the ternary complex GTP results in a dramatic decrease in the affinity of EF-Tu for aa-tRNA, thereby facilitating the release of EF-Tu.GDP from the aa-tRNA on the ribosome. Aurodox (200 microM) decreased the Kd of the GDP complex by nearly 20-fold, to 1.46 microM, and increased the Kd of the GTP complex by at least 6-fold. The binding of aurodox to EF-Tu therefore both considerably strengthens EF-Tu.GDP affinity for aa-tRNA and also weakens EF-Tu.GTP affinity for aa-tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. During the elongation cycle, EF-Tu interacts with guanine nucleotides, aa-tRNA and its nucleotide exchange factor (EF-Ts). Quantitative determination of the equilibrium dissociation constants that govern the interactions of mammalian mitochondrial EF-Tu (EF-Tu(mt)) with guanine nucleotides was the focus of the work reported here. Equilibrium dialysis with [3H]GDP was used to measure the equilibrium dissociation constant of the EF-Tu(mt) x GDP complex (K(GDP) = 1.0 +/- 0.1 microM). Competition of GTP with a fluorescent derivative of GDP (mantGDP) for binding to EF-Tu(mt) was used to measure the dissociation constant of the EF-Tu(mt) x GTP complex (K(GTP) = 18 +/- 9 microM). The analysis of these data required information on the dissociation constant of the EF-Tu(mt) x mantGDP complex (K(mGDP) = 2.0 +/- 0.5 microM), which was measured by equilibrium dialysis. Both K(GDP) and K(GTP) for EF-Tu(mt) are quite different (about two orders of magnitude higher) than the dissociation constants of the corresponding complexes formed by Escherichia coli EF-Tu. The forward and reverse rate constants for the association and dissociation of the EF-Tu(mt) x GDP complex were determined using the change in the fluorescence of mantGDP upon interaction with EF-Tu(mt). These values are in agreement with a simple equilibrium binding interaction between EF-Tu(mt) and GDP. The results obtained are discussed in terms of the recently described crystal structure of the EF-Tu(mt) x GDP complex.  相似文献   

11.
Anborgh PH  Okamura S  Parmeggiani A 《Biochemistry》2004,43(49):15550-15556
The antibiotic pulvomycin is an inhibitor of protein synthesis that prevents the formation of the ternary complex between elongation factor (EF-) Tu.GTP and aminoacyl-tRNA. In this report, novel aspects of its action on EF-Tu are described. Pulvomycin markedly affects the equilibrium and kinetics of the EF-Tu-nucleotide interaction, particularly of the EF-Tu.GTP complex. The binding affinity of EF-Tu for GTP is increased 1000 times, mainly as the consequence of a dramatic decrease in the dissociation rate of this complex. In contrast, the affinity for GDP is decreased 10-fold due to a marked increase in the dissociation rate of EF-Tu.GDP (25-fold) that mimics the action of EF-Ts, the GDP/GTP exchange factor of EF-Tu. The effects of pulvomycin and EF-Ts can coexist and are simply additive, supporting the conclusion that these two ligands interact with different sites of EF-Tu. This is further confirmed on native PAGE by the ability of EF-Tu to bind the EF-Ts and the antibiotic simultaneously. Pulvomycin enhances the intrinsic EF-Tu GTPase activity, like kirromycin, though to a much more modest extent. As with kirromycin, this stimulation depends on the concentration and nature of the monovalent cations, Li(+) being the most effective one, followed by Na(+), K(+), and NH(4)(+). In the presence of pulvomycin (in contrast to kirromycin), aa-tRNA and/or ribosomes do not enhance the GTPase activity of EF-Tu. The property of pulvomycin to modify selectively the conformation(s) of EF-Tu is also supported by its effect on heat- and urea-dependent denaturation, and tryptic digestion of the protein. Specific differences and similarities between the action of pulvomycin and the other EF-Tu-specific antibiotics are described and discussed.  相似文献   

12.
The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.  相似文献   

13.
14.
We have studied the properties of a mutant elongation factor Tu, encoded by tufB (EF-TuBo), in which Gly-222 is replaced by Asp. For its purification from the kirromycin-resistant EF-Tu encoded by tufA (EF-TuAr), a method was developed by exploiting the different affinities to kirromycin of the two factors and the competition between kirromycin and elongation factor Ts (EF-Ts) for binding to EF-Tu. The resulting EF-TuBo kirromycin and EF-TuAr EF-Ts complexes are separated by chromatography on diethylaminoethyl-Sephadex A-50. For the first time we have succeeded in obtaining a tufB product in homogeneous form. Compared with wild-type EF-Tu, EF-TuBo displays essentially the same affinity for GDP and GTP, with only the dissociation rate of EF-Tu GTP being slightly faster. Protection of amino-acyl-tRNA (aa-tRNA) against nonenzymatic deacylation by different EF-Tu species indicates that conformational alterations occur in the ternary complex EF-TuBo GTP aa-tRNA. However, the most dramatic modification is found in the EF-TuBo interaction with the ribosome. Its activity in poly(Phe) synthesis as well as in the GTPase activity associated with the interaction of its ternary complex with the ribosome mRNA complex requires higher Mg2+ concentrations than wild-type EF-Tu (Mg2+ optimum at 10-14 vs. 6 mM), even if EF-TuBo can sustain enzymatic binding of aa-tRNA to ribosomes at low Mg2+. The anomalous behavior of EF-TuBo is reflected in a remarkable increase of the fidelity in poly(Phe) synthesis, especially at high Mg2+ concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The GTPase activity of purified EF-1 alpha from calf brain has been studied under various experimental conditions and compared with that of EF-Tu. EF-1 alpha displays a much higher GTPase turnover than EF-Tu in the absence of aminoacyl-tRNA (aa-tRNA) and ribosomes (intrinsic GTPase activity); this is due to the higher exchange rate between bound GDP and free GTP. Also the intrinsic GTPase of EF-1 alpha is enhanced by increasing the concentration of monovalent cations, K+ being more effective than NH+4. Differently from EF-Tu, aa-tRNA is much more active than ribosomes in stimulating the EF-1 alpha GTPase activity. However, ribosomes strongly reinforce the aa-tRNA effect. In the absence of aa-tRNA the rate-limiting step of the GTPase turnover appears to be the hydrolysis of GTP, whereas in its presence the GDP/GTP exchange reaction becomes rate-limiting, since addition of EF-1 beta enhances turnover GTPase activity. Kirromycin moderately inhibits the intrinsic GTPase of EF-1 alpha; this effect turns into stimulation when aa-tRNA is present. Addition of ribosomes abolishes any kirromycin effect. The inability of kirromycin to affect the EF-1 alpha/guanine-nucleotide interaction in the presence of ribosomes shows that, differently from EF-Tu, the EF-1 alpha X GDP/GTP exchange reaction takes place on the ribosome.  相似文献   

16.
The fidelity of protein synthesis depends on the rate constants for the reaction of ribosomes with ternary complexes of elongation factor Tu (EF-Tu), GTP, and aminoacyl (aa)-tRNA. By measuring the rate constants for the reaction of poly(U)-programmed ribosomes with a binary complex of elongation factor (EF-Tu) and GTP we have shown that two of the key rate constants in the former reaction are determined exclusively by ribosome-EF-Tu interactions and are not affected by the aa-tRNA. These are the rate constant for GTP hydrolysis, which plays an important role in the fidelity of ternary complex selection by the ribosome, and the rate constant for EF-Tu.GDP dissociation from the ribosome, which plays an equally important role in subsequent proofreading of the aa-tRNA. We conclude that the fidelities of ternary complex selection and proofreading are fundamentally dependent on ribosome-EF-Tu interactions. These interactions determine the absolute value of the rate constants for GTP hydrolysis and EF-Tu.GDP dissociation. The ribosome then uses these rate constants as internal standards to measure, respectively, the rate constants for ternary complex and aa-tRNA dissociation from the ribosome. These rates, in turn, are highly dependent on whether the ternary complex and aa-tRNA are cognate or near-cognate to the codon being translated.  相似文献   

17.
Aurodox is a member of the family of kirromycin antibiotics, which inhibit protein biosynthesis by binding to elongation factor Tu (EF-Tu). We have determined the crystal structure of the 1:1:1 complex of Thermus thermophilus EF-Tu with GDP and aurodox to 2.0-A resolution. During its catalytic cycle, EF-Tu adopts two strikingly different conformations depending on the nucleotide bound: the GDP form and the GTP form. In the present structure, a GTP complex-like conformation of EF-Tu is observed, although GDP is bound to the nucleotide-binding site. This is consistent with previous proposals that aurodox fixes EF-Tu on the ribosome by locking it in its GTP form. Binding of EF-Tu.GDP to aminoacyl-tRNA and mutually exclusive binding of kirromycin and elongation factor Ts to EF-Tu can be explained on the basis of the structure. For many previously observed mutations that provide resistance to kirromycin, it can now be understood how they prevent interaction with the antibiotic. An unexpected feature of the structure is the reorientation of the His-85 side chain toward the nucleotide-binding site. We propose that this residue stabilizes the transition state of GTP hydrolysis, explaining the acceleration of the reaction by kirromycin-type antibiotics.  相似文献   

18.
A structural and functional understanding of resistance to the antibiotic kirromycin in Escherichia coli has been sought in order to shed new light on the functioning of the bacterial elongation factor Tu (EF-Tu), in particular its ability to act as a molecular switch. The mutant EF-Tu species G316D, A375T, A375V and Q124K, isolated by M13mp phage-mediated targeted mutagenesis, were studied. In this order the mutant EF-Tu species showed increasing resistance to the antibiotic as measured by poly(U)-directed poly(Phe) synthesis and intrinsic GTPase activities. The K'd values for kirromycin binding to mutant EF-Tu.GTP and EF-Tu.GDP increased in the same order. All mutation sites cluster in the interface of domains 1 and 3 of EF-Tu.GTP, not in that of EF-Tu.GDP. Evidence is presented that kirromycin binds to this interface of wild-type EF-Tu.GTP, thereby jamming the conformational switch of EF-Tu upon GTP hydrolysis. We conclude that the mutations result in two separate mechanisms of resistance to kirromycin. The first inhibits access of the antibiotic to its binding site on EF-Tu.GTP. A second mechanism exists on the ribosome, when mutant EF-Tu species release kirromycin and polypeptide chain elongation continues.  相似文献   

19.
In bacterial polypeptide synthesis aminoacyl-tRNA (aa-tRNA) bound to elongation factor Tu (EF-Tu) and GTP is part of a crucial intermediate ribonucleoprotein complex involved in the decoding of messenger RNA. The conformation and topology as well as the affinity of the macromolecules in this ternary aa-tRNA X EF-Tu X GTP complex are of fundamental importance for the nature of the interaction of the complex with the ribosome. The structural elements of aa-tRNA required for interaction with EF-Tu and GTP and the resulting functional implications are presented here.  相似文献   

20.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号