首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium vivax cannot be maintained in a continuous culture. To overcome this major obstacle to P. vivax research, we have developed an in vitro method to produce susceptible red blood cell (RBC) precursors from freshly isolated human cord hematopoietic stem cells (HSCs), which were activated with erythropoietin to differentiate into erythroid cells. Differentiation and maturation of erythroid cells were monitored using cell surface markers (CD71, CD36, GPA and Fy6). Duffy+ reticulocytes appeared after 10 days of erythroid cell culture and exponentially increased to high numbers on days 14–16. Beginning on day 10 these erythroid cells, referred to as growing RBCs (gRBCs), were co-cultured with P. vivax-infected blood directly isolated from patients. Parasite-infected gRBCs were detected by Giemsa staining and a P. vivax-specific immunofluorescence assay in 11 out of 14 P. vivax isolates. These P. vivax cultures were continuously maintained for more than 2 weeks by supplying fresh gRBCs; one was maintained for 85 days before discontinuing the culture. Our results demonstrate that gRBCs derived in vitro from HSCs can provide susceptible Duffy+ reticulocytes for continuous culture of P. vivax. Of particular interest, we discovered that parasites were able to invade nucleated erythroid cells or erythroblasts that are normally in the bone marrow. The possibility that P. vivax causes erythroblast destruction and hence inflammation in the bone marrow needs to be addressed.  相似文献   

2.
 用自制的苯基-琼脂糖CL-4B和羟基邻灰石等层析材料,从再生障碍性贫血病人尿中分离、纯化制得了红细胞生成素(EPO)。用多血小鼠红细胞~(56)Fe参入法测定该制品在体内的生物活力。用小鼠与人骨髓红系祖细胞培养法测其在体外的生物活力。实验结果说明,我们自制的EPO制品,不仅能用于动物,也能用于人骨贿红系祖细胞的培养。用Azocoll法测该制品中蛋白水解酶活力为阴性。  相似文献   

3.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid ‘burst-forming units’(BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

4.
Recombinant human interleukin-3 (rhuIL-3) was assessed for its effects on the growth of normal human hematopoietic bone marrow nucleated cells, and on granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells in a liquid culture system which allows for the prolonged growth of these cells in vitro. RhuIL-3, at concentrations of 100 and 500 units/mL, significantly enhanced the numbers of nucleated cells, as well as the numbers of supernatant and adherent CFU-GM and BFU-E growing in tissue culture flasks or dishes over a period of 4 to 6 weeks. The results demonstrated the rhuIL-3 has a stimulating effect on the growth of human marrow cells in prolonged culture. This information is consistent with the effects of rhuIL-3 in short-term marrow colony assays in vitro and with the in vivo actions of recombinant murine IL-3 in mice, and may be of relevance to clinical trials that will be assessing the hematopoietic effects of rhuIL-3 in humans.  相似文献   

5.
Compared to saline-injected mice 9 days after 6.5 Gy irradiation, there were twofold more Day 8 spleen colony-forming units (CFU-S) per femur and per spleen from B6D2F1 mice administered a radioprotective dose of human recombinant interleukin-1-alpha (rIL-1) 20 h prior to their irradiation. Studies in the present report compared the numbers of CFU-S in nonirradiated mice 20 h after saline or rIL-1 injection. Prior to irradiation, the number of Day 8 CFU-S was not significantly different in the bone marrow or spleens from saline-injected mice and rIL-1-injected mice. Also, in the bone marrow, the number of Day 12 CFU-S was similar for both groups of mice. Similar seeding efficiencies for CFU-S and percentage of CFU-S in S phase of the cell cycle provided further evidence that rIL-1 injection did not increase the number of CFU-S prior to irradiation. In a marrow repopulation assay, cellularity as well as the number of erythroid colony-forming units, erythroid burst-forming units, and granulocyte-macrophage colony-forming cells per femur of lethally irradiated mice were not increased in recipient mice of donor cells from rIL-1-injected mice. These results demonstrated that a twofold increase in the number of CFU-S at the time of irradiation was not necessary for the earlier recovery of CFU-S observed in mice irradiated with sublethal doses of radiation 20 h after rIL-1 injection.  相似文献   

6.
Antiserum raised against a mouse mast cell line (FMP1) reacts with 90% to 100% of spleen colony-forming units (CFU-s), granulocyte/macrophage colony-forming cells (CFC-gm), erythroid burst-forming units (BFU-e), and 15% of nucleated marrow cells, using a complement-dependent cytotoxicity assay. We demonstrated that bone marrow, spleen, or thymus cells are able to absorb this activity from the antiserum. Although mouse brain cells have low reactivity with anti-FMP1 serum, the cytolysis level was reduced to background when antiserum was absorbed with brain cells. In addition, colony formation by marrow CFU-s, CFC-gm, and BFU-e was no longer prevented when the cells were incubated with brain-absorbed anti-FMP1 serum and complement. These findings suggest the presence of brain-associated antigens on CFU-s, CFC-gm, and BFU-e. To test whether a CFU-s accessory cell population in marrow is affected by treatment with anti-FMP1 serum and complement, antibody-treated marrow cells were mixed with large numbers of thymocytes and injected into recipient mice. Colony formation was not altered, indicating that the antiserum reacted directly with antigens on CFU-s and not on CFU-s accessory cells.  相似文献   

7.
This report presents the results of an investigation in which Gel-Well culture chambers were evaluated for their utility as a liquid culture assay system to measure the responses of hematopoietic colony-forming cells (CFC) to recombinant and cell-derived growth factors. Gel-Wells, designed for anchorage-independent cell growth and diffusion of media components, permitted the weekly replacement of media and growth factors without removing cells from the culture chambers. In these studies, changes in cellularity and CFC content in Gel-Well cultures of human umbilical cord blood cells induced by recombinant interleukin 3 (rIL-3) were quantified. After one week in culture without rIL-3, the number of erythroid burst-forming units (BFU-e) had decreased to 25 +/- 38% of pre-values. In contrast, addition of rIL-3 induced an increase in the number of BFU-e to 390 +/- 135% of pre-values. By three weeks with rIL-3, the number of granulocyte-macrophage colony-forming units (CFU-gm) had increased to 292 +/- 58% of pre-values. Also, the presence of a bone marrow stromal cell layer under the Gel-Well helped to maintain the survival of CFC in liquid culture. These studies demonstrated that Gel-Well culture chambers provide a useful liquid culture system for studying the responses of CFC to growth factors.  相似文献   

8.
Currently the most successful methods for culturing human hematopoietic cells employ some form of perfused bioreactor system. However, these systems do not permit the clonal outgrowth of single progenitor cells. Therefore, we have investigated the use of alginate-poly-L-lysine microencapsulation of human bone marrow, combined with rapid medium exchange, as a system that may overcome this limitation for the purpose of studying the kinetics of progenitor cell growth. We report that a 12 to 24-fold multilineage expansion of adult human bone marow cells was achieved in about 16 to 19 days with this system and that visually identifiable colonies within the capsules were responsible for the increase in cell number. The colonies that represented the majority of cell growth originated from cells that appeared to be present in a frequency of about 1 in 4000 in the encapsulated cell population. These colonies were predominantly granulocytic and contained greater than 40,000 cells each. Large erythroid colonies were also present in the capsules, and they often contained over 10,000 cells each. Time profiles of the erythroid progenitor cell density over time were obtained. Burst-forming units erythroid (BFU-E) peaked around day 5, and the number of morphologically identifiable erythroid cells (erythroblasts through reticulocytes) peaked on day 12. We also report the existence of a critical inoculum density and how growth was improved with the use of conditioned medium derived from a microcapsule culture initiated above the critical inoculum density. Taken together, these results suggest that microencapsulation of human hematopoietic cells allows for outgrowth of progenitor, and possible preprogenitor, cells and could serve as a novel culture system for monitoring the growth and differentiation kinetics of these cells.  相似文献   

9.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

10.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFR-D-E) colonies and myeloid higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0.1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

11.
The human pathogenic parvovirus B19 cannot be grown in standard tissue culture but propagates in human bone marrow, where it is cytotoxic to erythroid progenitor cells. We now show that parvovirus B19 can replicate in cynomolgus bone marrow. Cynomolgus monkeys may be a suitable animal model for pathogenesis studies of parvovirus B19.  相似文献   

12.
用一种杂交瘤皿,根据内皮祖细胞集落形成单位(endothelial progenitor cells colony-forming units,EPCs-CFUs)的形态特征和EPCs表面特异性标记物分离EPCs.取大鼠股骨、胫骨骨髓,将全骨髓接种在聚苯乙烯制作的杂交瘤皿上,培养4~7天后出现CFUs,将这些集落分别挑选出来后,取单个集落的部分细胞免疫荧光鉴定EPCs表面特异性标记物CD133/VEGFR-2.CD133/VEGFR-2双阳性即为EPCs-CFUs.与此对应的余下一部分继续传代增殖,流式细胞术鉴定CD133/VEGFR-2/CD34,并把此方法命名为微孔法.发现接种后第4天,显微镜下可见明显的CFUs.免疫荧光鉴定大约7%的CFUs为CD133 /VEGFR-2 ,进一步传代培养,流式细胞术鉴定CD133 /VEGFR-2 /CD34 细胞纯度达70%以上.传代细胞可在体外形成血管样结构,并表达内皮细胞特异性标记物vWF.结果表明通过微孔法能成功地从大鼠骨髓分离到EPCs.  相似文献   

13.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid 'burst-forming units' (BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

14.
To examine the importance of topological constraints on DNA during erythroid development, we measured the effects of camptothecin and teniposide, two tumoricidal agents which are also specific inhibitors of type I and type II topoisomerases respectively, on the formation of hematopoietic colonies by cultured human bone marrow cells. When added to bone marrow culture, each inhibitor alone impairs the formation of early BFU-E-derived colonies, late CFU-E-derived colonies and mixed hematopoietic (CFU-GEMM-derived) colonies by up to 100%. Inhibition of colony formation is directly related to the time of inhibitor addition and the inhibitor concentration tested. Although either inhibitor alone reduces colony formation by 90%, when added together at a submaximal concentration, camptothecin and teniposide exert a synergistic suppressive effect. Furthermore, addition of topoisomerase inhibitors to culture impairs hemoglobinization of colony erythroblasts in a time-dependent fashion. In contrast to the effects of topoisomerase inhibitors, the antiproliferative agent aphidicolin reduces erythroid colony number and size without altering hemoglobinization of colony erythroblasts. Since neither topoisomerase inhibitor alters the morphology of cultured cells, the capacity of cells to exclude trypan blue or the potential to form erythroid colonies through the interval required for the first progenitor cell division, it is unlikely that camptothecin or teniposide are cytotoxic to hematopoietic cells. Human mononuclear cells enriched in bone marrow lymphocytes and nucleated erythroblasts from both human and mouse sources release DNA into the detergent soluble fraction. Release requires functional topoisomerases and is altered by acute exposure to topoisomerase inhibitors. Our results suggest that topoisomerases are critical not only to proliferation but also to differentiation of human marrow erythroid progenitor cells and stem cells in culture.  相似文献   

15.
Several reports have indicated that a circulating serum inhibitor (antibody) is involved in the pathogenesis of acquired pure red cell aplasia (PRCA). In the present study, the pathophysiologic significance of this inhibitor was assessed according to the status of erythroid progenitor cells in the bone marrow. So far, direct proof for the antibody acting against erythroid stemcells was lacking. Employing an "in vitro" assay, erythroid colony forming cell (CFU-e) numbers in PRCA marrow were quantified and the cytotoxic effect of PRCA serum on CFU-e was investigated. It was revealed that the CFU-e population size in the marrow of PRCA patients was severely reduced; at the same time the relative number of myeloid colony forming cells was normal. The serum was demonstrated to contain a factor cell which was cytotoxic to CFU-e, in the presence of complement. The results indicate that inhibition of erythropoiesis in PRCA is achieved by a complement dependent plasma factor which eliminates or inactivates CFU-e and which constitutes an effective block at the precursor cell level in the differentiation pathway of the erythroid line. The data present a practical assay for measuring cytotoxic factors affecting erythroid stem cells.  相似文献   

16.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFU-D-E) colonies and myeloid clusters in the plasma clot. The number and growth rate of mouse CFU-D-G were higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0·1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

17.
18.
Conditioned media (CM) from allogeneic stimulated cultures of light density cells (less than 1.08 g/cm3) from the peripheral blood of normal dogs were used to stimulate the growth of erythroid burst-forming units (BFU-E) in bone marrow from normal dogs. Maximum numbers of BFU-E were obtained when 5% (vol/vol) 3 X CM and 2 U/ml erythropoietin were added to plasma clot cultures of bone marrow cells. In addition, the radiation sensitivity (D0 value) was determined for CFU-E and for BFU-E in bone marrow cells exposed in vitro to 1 MeV fission neutron radiation or 250 kVp X rays. BFU-E were more sensitive than CFU-E to the lethal effects of both types of radiation. For bone marrow cells exposed to 1 MeV neutron radiation, the D0 for CFU-E was 0.27 +/- 0.01 Gy, and the D0 for BFU-E was 0.16 +/- 0.03 Gy. D0 values for CFU-E and BFU-E were, respectively, 0.61 +/- 0.05 Gy and 0.26 +/- 0.09 Gy for cells exposed to X rays. The neutron RBE values for the culture conditions described were 2.3 +/- 0.01 for CFU-E and 1.6 +/- 0.40 for BFU-E.  相似文献   

19.
A novel indirect co-culture system was established to support ex vivo expansion of hematopoietic progenitors in umbilical cord blood (UCB) by using thrombopoietin (TPO)/Flt-3 ligand (FL)-transduced human-marrow-derived mesenchymal stem cells (tfhMSCs) as a feeder. UCB CD34+ cells were isolated and cultured by using five culture systems in serum-containing or serum-free medium. Suitable aliquots of cultured cells were taken to monitor cell production, clonogenic activity, and long-term culture-initiating culture (LTC-IC) output. Finally, the severe-combined immunodeficient mouse (SCID) repopulating cell (SRC) assay was performed to confirm the ability of the indirect co-cultured cells from the tfhMSCs system to reconstitute long-term hematopoiesis. Results showed significant differences in the number of total nucleated cells (TNCs) among the culture systems with respect to serum-containing medium or serum-free medium during 14-day culture. In addition, on day 14, the outputs of CD34+ cells, the colony-forming units (CFUs) in culture, and the CFUs in mixed colonies containing erythroid and myeloid cells and megakaryocytes in the tfhMSC indirect co-culture system were significantly enhanced. The LTC-IC assay demonstrated that the tfhMSCs indirect co-culture system had the strongest activity. The SCID-SRC assay confirmed the extensive ability of the expanded cells from the tfhMSCs indirect co-culture systems to reconstitute long-term hematopoiesis. Furthermore, polymerase chain reaction analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of non-obese diabetic/SCID mice. Thus, hMSCs transduced with TPO/FL, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro. The tfhMSC indirect co-culture system may therefore be a suitable system for ex vivo manipulation of primitive progenitor cells under non-contact culture conditions.This work was supported by the Zhejiang Scientific Foundation (no. 2003C23015).  相似文献   

20.
R D Barr  M Koekebakker  C A Rand 《Blut》1985,50(3):179-183
The use of methylcellulose (MC) gels or plasma clots, for the support of human erythropoiesis in vitro, is associated with several technical disadvantages. Substitution of soft agar offers the prospect of overcoming these difficulties. In comparative studies, normal human bone marrow cells were cultured with erythropoietin (Epo) in agar (0.1%-0.3%) and MC. Concentrations of 0.175% and 0.2% agar proved to be optimal with respect to the combination of cloning efficiency and colony density. Further morphological examination revealed that subcolony formation in erythroid 'bursts' was influenced by gel viscosity. In additional experiments, miniaturising the assay system, to 0.25 ml culture volumes, increased cloning efficiency and reduced Epo utilization. These results confirm and expand earlier observations, and support a preference for the general use of agar in human erythroid cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号