首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

2.
The activity of three enzymes, aspartokinase, homoserine dehydrogenase, and homoserine kinase, has been studied in the industrial strainSaccharomyces cerevisiae IFI256 and in the mutants derived from it that are able to overproduce methionine and/or threonine. Most of the mutants showed alteration of the kinetic properties of the enzymes aspartokinase, which was less inhibited by threonine and increased its affinity for aspartate, and homoserine dehydrogenase and homoserine kinase, which both lost affinity for homoserine. Furthermore, they showed in vitro specific activities for aspartokinase and homoserine kinase that were higher than those of the wild type, resulting in accumulation of aspartate, homoserine, threonine, and/or methionine/S-adenosyl-methionine (Ado-Met). Together with an increase in the specific activity of both aspartokinase and homoserine kinase, there was a considerable and parallel increase in methionine and threonine concentration in the mutants. Those which produced the maximal concentration of these amino acids underwent minimal aspartokinase inhibition by threonine. This supports previous data that identify aspartokinase as the main agent in the regulation of the biosynthetic pathway of these amino acids. The homoserine kinase in the mutants showed inhibition by methionine together with a lack or a reduction of the inhibition by threonine that the wild type undergoes, which finding suggests an important role for this enzyme in methionine and threonine regulation. Finally, homoserine dehydrogenase displayed very similar specific activity in the mutants and the wild type in spite of the changes observed in amino acid concentrations; this points to a minor role for this enzyme in amino acid regulation.  相似文献   

3.
Aspartate kinase and homoserine dehydrogenase activity were assayed in a dialyzed cell-free extract ofCandida utilis. Aspartate kinase was partly inhibited by ATP-Mg and by Mg2+ alone. There appear to be two isoenzymes of aspartate kinase in the yeast, one heatlabile, the other relatively heat-stable. The first is subject to feedback inhibition by threonine, the other is threonine-resistant. Neither aspartate kinase nor homoserine dehydrogenase is the rate-limiting enzyme in methionine biosynthesis. Homoserine dehydrogenase measured in the forward direction showed an activity five times higher than aspartate kinase. No regulatory interaction could be demonstrated for this enzyme. No repression of aspartate kinase and homoserine dehydrogenase synthesis by threonine, methionine or both amino acids was observed.  相似文献   

4.
Methionine-insensitive revertants with normal homoserine dehydrogenase (HD) derived from Brevibacterium flavum mutant No. 1-231, a lysine producer with S-(2-aminoethyl)-l-cysteine (AEC) resistance, methionine sensitivity, a low HD level and a pyruvate kinase (PK) defect, were still AEC-resistant and PK-deficient similar to No. 1-231. But they did not produce more lysine than the original strain, No. 15-8, from which strain No. 1-231 was derived. A high lysine producing mutant, No. 22, which was derived from strain No. 1-231, selected by sensitivity to β-fluoropyruvate (FP), and was defective in HD, produced more lysine than HD-defective mutants which were derived by two-step mutation from strain No. 1-231, selected by homoserine auxotrophy. Strain No. 22 did not show FP sensitivity under the conditions tested. Among various lysine-biosynthetic enzymes examined, it had a higher level of aspartate-β-semialdehyde dehydrogenase than did its parent and the latter HD-defective mutants. Strain No. 22 produced 50 g/liter of lysine as the HC1 salt when cultured for 72 hr in a medium containing soybean-meal hydrolysate, methionine and 100 g/liter of glucose.  相似文献   

5.
Metabolism of various sulfur compounds in Bacillus subtilis during growth and sporulation was investigated by use of tracer techniques, in an attempt to clarify the mechanism involved in the formation of cystine rich protein of the spore coat.

Methionine, homocysteine, cystathionine, cysteine and some inorganic sulfur compounds (sulfate, sulfite and thiosulfate) were utilized by this organism as sulfur sources for its growth and sporulation. Biosynthesis of methionine from sulfate during growth was more or less inhibited by the addition of cysteine, homocysteine or cystathionine to the culture.

It is suggested from these results that in Bacillus subtilis methionine is synthesized from sulfate through cysteine, cystathionine and homocysteine as is the case in Salmonella or Neurospora. The results also suggest that the metabolism of sulfur-containing amino acids in Bacillus subtilis is strongly regulated by methionine and homocysteine.  相似文献   

6.
Ethionine reduced both the growth rate and the final growth level of Serratia marcescens Sr41. Growth inhibition was completely reversed by methionine. Strain D-315, defective in homoserine dehydrogenase I, was more sensitive to ethionine-mediated growth inhibition than was the wild-type strain. Ethionine-resistant mutants were isolated from cultures of strain D-316, which was derived from strain D-315 as a threonine deaminase-deficient mutant. Of 60 resistant colonies, 7 excreted threonine on minimal agar plates. One threonine-excreting strain, ETr17, was highly resistant to ethionine and, moreover, insensitive to methionine-mediated growth inhibition, whereas the parent strain was sensitive. When cultured in minimal medium with or without excess methionine, strain ETr17 had a higher homoserine dehydrogenase level than did strain D-316. The homoserine dehydrogenase activity was not inhibited by threonine or methionine. Transductional analysis revealed that the ethionine-resistant (etr-1) mutation carried by strain ETr17 was located in the metBM-argE region and caused the derepressed synthesis of homoserine dehydrogenase II. Strain ETr17 had a higher aspartokinase level than did the parent strain. By transductional cross with the argE+ marker, the etr-1 mutation was transferred into strain D-562 which was derived from D-505, a strain defective in aspartokinases I and III. The constructed strain had a higher aspartokinase level than did strain D-505 in medium with or without excess methionine, indicating that the etr-1 mutation led to the derepressed synthesis of aspartokinase II. Strain ETr17 produced about 8 mg of threonine per ml of medium containing sucrose and urea.  相似文献   

7.
Summary In Bacillus subtilis a dehydrogenase activity for branched chain amino acids was induced twelvefold in glucose medium by isoleucine. To a lesser degree this activity was induced by metabolically related amino acids with the exception of leucine which hardly induced. The induced enzyme actvity is different from alanine dehydrogenase. The presumable role of this inducible enzyme in anteiso fatty acid biosynthesis is discussed.  相似文献   

8.
Mutants of Bacillus subtilis constitutive for L-leucine dehydrogenase synthesis were selected. Using these mutants we could determine two functional roles for the L-leucine dehydrogenase. This enzyme liberates ammonium ions from branched chain amino acids when supplied as the sole nitrogen source. Another function is to synthesize from L-isoleucine, L-leucine, and L-valine the branched chain -keto acids which are precursors of branched chain fatty acid biosynthesis. These results together with the inducibility of the enzyme suggest that the L-leucine dehydrogenase has primarily a catabolic rather than an anabolic function in the metabolism of Bacillus subtilis.  相似文献   

9.
A mutant of Salmonella typhimurium was selected for its spontaneous resistance to the lysine analog, thialysine (S-2-aminoethyl cysteine). This strain, JB585, exhibits a number of pleiotropic properties including a partial growth requirement for threonine, resistance to thiaisoleucine and azaleucine, excretion of lysine and valine, and inhibition of growth by methionine. Genetic studies show that these properties are caused by a single mutation in the thrA gene which encodes the threonine-controlled aspartokinase-homoserine dehydrogenase activities. Enzyme assays demonstrated that the aspartokinase activity is unstable and the threonine-controlled homoserine dehydrogenase activity absent in extracts prepared from the mutant. These results explain the growth inhibition by methionine because the remaining homoserine dehydrogenase isoenzyme would be repressed by methionine, causing a limitation for threonine. The partial growth requirement for threonine during growth in glucose minimal medium may also, by producing an isoleucine limitation, cause derepression of the isoleucine-valine enzymes and provide an explanation for both the valine excretion, and azaleucine and thiaisoleucine resistance. The overproduction of lysine may confer the thialysine resistance.  相似文献   

10.
Homoserine dehydrogenase in dialyzed cell extracts of Bacillus subtilis 168 was studied, particularly with regard to inhibition, repression, and level of activity as a function of stage of development (growth and sporulation). It was assayed in the "forward direction" using L-aspartic semialdehyde and NADPH as substrates. Of the potentials inhibitors tested, only cysteine and NADP were found to be effective. Both L- and D-cysteine were equally effective. Therefore, the physiological significance of cysteine as an inhibitor is somewhat questionable. Amino acids involved in repression of homoserine dehydrogenase included methionine, isoleucine, possibly threonine, and one or more unidentified components of Casamino acids. The specific activity of homoserine dehydrogenase was highest during the exponential phase of growth and declined steadily during the stationary phase of growth. The low specific activity during late sporulation may favor preferential funnelling of L-aspartic semialdehyde into the lysine pathway, where it is needed for synthesis of large amounts of dipicolinic acid and diaminopimelic acid.  相似文献   

11.

Background  

Two putative methionine aminopeptidase genes,map(essential) andyflG(non-essential), were identified in the genome sequence ofBacillus subtilis. We investigated whether they can function as methionine aminopeptidases and further explored possible reasons for their essentiality or dispensability inB. subtilis.  相似文献   

12.
Constant levels of amino acids enhanced the velocity of Bacillus subtilis 60015 cells about 2-fold and stimulated the response in motility assays. The stimulation of velocity did not occur via the receptors for chemotaxis. Cysteine and methionine, general inhibitors of chemotaxis, both completely inhibited the smooth response in a temporal gradient of attractant. After methionine starvation B. subtilis 60015 showed no measurable response in a temporal gradient of attractant, this in contrast to the effect observed with some other bacteria. Addition of methionine to starved cells restored the response toward attractant. Revertants of B. subtilis 60015 for methionine requirement could not be starved and showed a normal behavior toward temporal gradients of attractant.Abbreviation O.D.600 optical density measured at 600 nm  相似文献   

13.
An inosine- and guanosine-producing strain, AJ11100, of Bacillus subtilis could not grow in the minimum medium supplemented with 50 µg of sulfaguanidine per ml. When sulfaguanidine resistant mutants were derived from AJ11100, the sulfaguanidine resistance was frequently accompanied by xanthine requirement. All the xanthine auxotrophic mutants required a large amount of xanthine for cell growth and inosine accumulation. Revertants were then derived from one of the xanthine auxotrophic mutants, AJ11101, and improved inosine producers were obtained. The best mutant, AJ11102, accumulated 20.6 g of inosine per liter.

Furthermore, enzyme activities of inosine 5′-monophosphate (IMP) dehydrogenase, 5′-nucleotidase and phosphoribosyl pyrophosphate (PRPP) amidotransferase were assayed to investigate why AJ11102 accumulated an increased amount of inosine. The results showed that the increase of specific activity of 5′-nucleotidase contributed much to the increased accumulation of inosine.  相似文献   

14.
Evidence is given for the repressive regulation of malate dehydrogenase (EC 1.1.1.37) synthesis in Bacillus subtilis by isocitrate. The comparison of different mutants blocked in the citric acid style suggests this conclusion.  相似文献   

15.
Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum   总被引:9,自引:0,他引:9  
The regulation of the six enzymes responsible for the conversion of aspartate to lysine, together with homoserine dehydrogenase, was studied in Corynebacterium glutamicum. In addition to aspartate kinase activity, the synthesis of diaminopimelate decarboxylase was also found to be regulated. The specific activity of this enzyme was reduced to one-third in extracts of cells grown in the presence of lysine. Aspartate-semialdehyde dehydrogenase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, and diaminopimelate dehydrogenase were neither influenced in their specific activity, nor inhibited, by any of the aspartate family of amino acids. Homoserine dehydrogenase was repressed by methionine (to 15% of its original activity) and inhibited by threonine (4% remaining activity). Inclusion of leucine in the growth medium resulted in a twofold increase of homoserine dehydrogenase specific activity. The flow of aspartate semialdehyde to either lysine or homoserine was influenced by the activity of homoserine dehydrogenase or dihydrodipicolinate synthase. Thus, the twofold increase in homoserine dehydrogenase activity resulted in a decrease in lysine formation accompanied by the formation of isoleucine. In contrast, repression of homoserine dehydrogenase resulted in increased lysine formation. A similar increase of the flow of aspartate semialdehyde to lysine was found in strains with increased dihydrodipicolinate synthase activity, constructed by introducing the dapA gene of Escherichia coli (coding for the synthase) into C. glutamicum.  相似文献   

16.
[目的]枯草芽胞杆菌ComQ是一种类异戊二烯生物合成酶.利用生物信息学预测分析了ComQ的生物学特性,对comQ基因进行过表达和敲除,构建突变菌,孔板发酵培养验证生物膜形态变化.[方法]运用NCBI (National Center for Biotechnology Information)网站里的Protein数据...  相似文献   

17.
The Bacillus subtilis wild strains isolated from okpehe, a traditional fermented condiment used as seasoning in Nigeria, the reference and typed strains were investigated for their phenotypic diversity and their technological parameters with a view to obtain adequate data that would enable selection of appropriated starter cultures for vegetable protein fermentation in West Africa. All the 7 strains studied demonstrated diverse phenotypic characteristics and they were identified as Bacillus subtilis, based on the API 50 CHB combined with API 20E profile. Specific sugars that indicated a good hydrolytic potential of the wild strains were fermented. The highest proteinase activity of 90 AU/ml determined quantitatively was observed in the strain Bacillus subtilis BFE 5372, the proteinase was identified by the APIZYM gallery as chymotrypsin. Highest amylase activity of 13 AU/ml was noticed in strain Bacillus subtilis DSM 347 while only 4 strains produced polyglutamic acid with the strain Bacillus subtilis BFE 5359 producing the highest polyglutamate activity of 2.5 mm. Although strain Bacillus subtilis BFE 5301 did not release detectable polyglutamate, the strain demonstrated antagonism against different bacteria and the antimicrobial substance produced by strain Bacillus subtilis BFE 5301 was confirmed as a bacteriocin since its activities were lost after treatment with chymotrypsin and pepsin. The data generated showed the technological parameters that can aid selection of wild strains such as Bacillus subtilis BFE 5301, BFE 5359 and BFE 5372 for optimization of condiment production.  相似文献   

18.
A 6.5 kb DNA fragment containing the gene (thrC) encoding threonine synthase, the last enzyme of the threonine biosynthetic pathway, has been cloned from the DNA ofBacillus sp. ULM1 by complementation ofEscherichia coli andBrevibacterium lactofermentum thrC auxotrophs. Complementation studies showed that thethrB gene (encoding homoserine kinase) is found downstream from thethrC gene, and analysis of nucleotide sequences indicated that thehom gene (encoding homoserine dehydrogenase) is located upstream of thethrC gene. The organization of this cluster of genes is similar to theBacillus subtilis threonine operon (hom—thrC—thrB). An 1.9 kbBclI, fragment from theBacillus sp. ULM1 DNA insert that complementedthrC mutations both inE. coli and in corynebacteria was sequenced, and an ORF encoding a protein of 351 amino acids was found corresponding to a protein of 37462 Da. ThethrC gene showed a low G+C content (39.4%) and the encoded threonine synthase is very similar to theB. subtilis enzyme. Expression of the 1.9 kbBclI DNA fragment inE. coli minicells resulted in the formation of a 37 kDa protein. The upstream region of this gene shows promoter activity inE. coli but not in corynebacteria. A peptide sequence, including a lysine that is known to bind the pyridoxal phosphate cofactor, is conserved in all threonine synthase sequences and also in the threonine and serine dehydratase genes. Amino acid comparison of nine threonine synthases revealed evolutionary relationships between different groups of bacteria. Dedicated to Dr. J. Spížek on the occasion of his 60th birthday  相似文献   

19.

Background  

Polyamine synthesis produces methylthioadenosine, which has to be disposed of. The cell recycles it into methionine through methylthioribose (MTR). Very little was known about MTR recycling for methionine salvage in Bacillus subtilis.  相似文献   

20.
FKBP12 is a conserved member of the prolyl-isomerase enzyme family and serves as the intracellular receptor for FK506 that mediates immunosuppression in mammals and antimicrobial actions in fungi. To investigate the cellular functions of FKBP12 in Saccharomyces cerevisiae, we employed a high-throughput assay to identify mutations that are synthetically lethal with a mutation in the FPR1 gene, which encodes FKBP12. This screen identified a mutation in the HOM6 gene, which encodes homoserine dehydrogenase, the enzyme catalyzing the last step in conversion of aspartic acid into homoserine, the common precursor in threonine and methionine synthesis. Lethality of fpr1 hom6 double mutants was suppressed by null mutations in HOM3 or HOM2, encoding aspartokinase and aspartate beta-semialdehyde dehydrogenase, respectively, supporting the hypothesis that fpr1 hom6 double mutants are inviable because of toxic accumulation of aspartate beta-semialdehyde, the substrate of homoserine dehydrogenase. Our findings also indicate that mutation or inhibition of FKBP12 dysregulates the homoserine synthetic pathway by perturbing aspartokinase feedback inhibition by threonine. Because this pathway is conserved in fungi but not in mammals, our findings suggest a facile route to synergistic antifungal drug development via concomitant inhibition of FKBP12 and Hom6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号