首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is characterized by a functional decline in most physiological processes, including alterations in cellular metabolism and defense mechanisms. Increasing evidence suggests that caloric restriction extends longevity and retards age-related diseases at least in part by reducing metabolic rate and oxidative stress in a variety of species, including yeast, worms, flies, and mice. Moreover, recent studies in invertebrates – worms and flies, highlight the intricate interrelation between reproductive longevity and somatic aging (known as disposable soma theory of aging), which appears to be conserved in vertebrates. This review is specifically focused on how the reproductive system modulates somatic aging and vice versa in genetic model systems. Since many signaling pathways governing the aging process are evolutionarily conserved, similar mechanisms may be involved in controlling soma and reproductive aging in vertebrates.  相似文献   

2.
Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.  相似文献   

3.
Yang W  Li J  Hekimi S 《Genetics》2007,177(4):2063-2074
SOD-1 and SOD-2 detoxify superoxide in the cytoplasm and mitochondria. We find that, although several long-lived mutants of Caenorhabditis elegans have increased SOD levels, this phenomenon does not correlate with life span or growth rate. Furthermore, although disruption of sod-1 or -2 expression produces numerous phenotypes, including increased sensitivity to paraquat and increased oxidative damage to proteins (except in daf-2 mutants), this fails to shorten the life span of these long-lived mutants. In fact, sod-1(RNAi) increases the life span of daf-2 mutants and sod-2(RNAi) that of clk-1 mutants. Our results suggest that increased superoxide detoxification and low oxidative damage are not crucial for the longevity of the mutants examined, with the possible exception of daf-2, where our results are inconclusive. These results are surprising because several of the long-lived mutants that we examined specifically affect mitochondrial electron transport, a process whose involvement in life-span determination is believed to be related to superoxide generation. We discuss the significance of our findings in light of the oxidative stress theory of aging.  相似文献   

4.
Available information indicates that long-lived mammals have low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. On the other hand, many studies have consistently shown that dietary restriction (DR) in rodents also decreases mitochondrial ROS (mtROS) production and oxidative damage to mitochondrial DNA and proteins. It has been observed that protein restriction also decreases mtROS generation and oxidative stress in rat liver, whereas neither carbohydrate nor lipid restriction change these parameters. This is interesting because protein restriction also increases maximum longevity in rodents (although to a lower extent than DR) and is a much more practicable intervention for humans than DR, whereas neither carbohydrate nor lipid restriction seem to change rodent longevity. Moreover, it has been found that isocaloric methionine restriction also decreases mtROS generation and oxidative stress in rodent tissues, and this manipulation also increases maximum longevity in rats and mice. In addition, excessive dietary methionine also increases mtROS generation in rat liver. These studies suggest that the reduced intake of dietary methionine can be responsible for the decrease in mitochondrial ROS generation and the ensuing oxidative damage that occurs during DR, as well as for part of the increase in maximum longevity induced by this dietary manipulation. In addition, the mean intake of proteins (and thus methionine) of Western human populations is much higher than needed. Therefore, decreasing such levels to the recommended ones has a great potential to lower tissue oxidative stress and to increase healthy life span in humans while avoiding the possible undesirable effects of DR diets.  相似文献   

5.
Available information indicates that long-lived mammals have low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. On the other hand, many studies have consistently shown that dietary restriction (DR) in rodents also decreases mitochondrial ROS (mtROS) production and oxidative damage to mitochondrial DNA and proteins. It has been observed that protein restriction also decreases mtROS generation and oxidative stress in rat liver, whereas neither carbohydrate nor lipid restriction change these parameters. This is interesting because protein restriction also increases maximum longevity in rodents (although to a lower extent than DR) and is a much more practicable intervention for humans than DR, whereas neither carbohydrate nor lipid restriction seem to change rodent longevity. Moreover, it has been found that isocaloric methionine restriction also decreases mtROS generation and oxidative stress in rodent tissues, and this manipulation also increases maximum longevity in rats and mice. In addition, excessive dietary methionine also increases mtROS generation in rat liver. These studies suggest that the reduced intake of dietary methionine can be responsible for the decrease in mitochondrial ROS generation and the ensuing oxidative damage that occurs during DR, as well as for part of the increase in maximum longevity induced by this dietary manipulation. In addition, the mean intake of proteins (and thus methionine) of Western human populations is much higher than needed. Therefore, decreasing such levels to the recommended ones has a great potential to lower tissue oxidative stress and to increase healthy life span in humans while avoiding the possible undesirable effects of DR diets.  相似文献   

6.
Longevity and the costs of reproduction in a historical human population   总被引:3,自引:0,他引:3  
It has been argued that the priority that natural selection places on reproduction negatively affects other processes such as longevity and the problem posed by this trade-off underlies the disposable soma theory for the evolution of human ageing. Here we examine the relationship between reproduction and longevity in a historical human population (the Krummh?rn, north-west Germany 1720-1870). In our initial analyses, we found no support for the hypothesized negative effects of reproduction on longevity: married women who remained childless lived no longer than women who reproduced and women who had few children lived no longer than women who had many children. However, more detailed analyses in relation to socio-economic class revealed that the extent to which reproduction has an effect on longevity is a function of the level of economic deprivation. We found that, when possible sources of confound were controlled for (e.g. duration of marriage and amount of time spent in fecund marriage), there is an increasingly strong relationship between longevity and reproduction with increasing poverty.  相似文献   

7.
Studies in different organisms have revealed that ageing is a complex process involving a tight regulation of gene expression. Among other features, ageing organisms generally display an increased oxidative stress and a decreased mitochondrial function. The increase in oxidative stress can be attributable to reactive oxygen species, which are mainly produced by mitochondria as a by-product of energy metabolism. Consistent with these data, mitochondria have been suggested to play a significant role in lifespan determination. The fruitfly Drosophila melanogaster is a well-suited organism to study ageing as it is relatively short-lived, mainly composed of post-mitotic cells, has sequenced nuclear and mitochondrial genomes, and multiple genetic tools are available. It has been used in genome-wide studies to unveil the molecular signature of ageing, in different feeding and dietary restriction protocols and in overexpression and down-regulation studies to examine the effect of specific compounds or genes/proteins on lifespan. Here we review the various features linking mitochondria and ageing in Drosophila melanogaster.  相似文献   

8.
Once considered as a mere by-product of respiration, mitochondrial generation of reactive oxygen species (ROS) has recently emerged as a genetically controlled phenomenon, involved in complex intracellular signal transduction cascades that directly regulate cell survival and death in responses to environmental stressors. These cascades are involved in the pathogenesis of several major age-related diseases, such as cancer and neurodegeneration, and also appear to somehow regulate the "normal" ageing process. The present short review summarizes recent discoveries on mitochondrial reactive oxygen species regulation by p53, a tumor suppressor protein and p66shc, a protein implicated in the life-span determination. It also outlines the emerging network whereby these molecules cross-talk with each other and with the mitochondrial antioxidant system, namely MnSOD (SOD2), another life-span determining protein, to regulate oxidative stress in the organelle. This molecular circuit, which comprises two genetic determinants of longevity and a major tumor suppressor gene, also provides a theoretical framework connecting senescence and cancer.  相似文献   

9.
The function of mitochondria in generation of cellular ATP in the process of oxidative phosphorylation is widely recognised. During the past decades there have been significant advances in our understanding of the functions of mitochondria other than the generation of energy. These include their role in apoptosis, acting as signalling organelles, mammalian development and ageing as well as their contribution to the coordination between cell metabolism and cell proliferation. Our understanding of biological processes modulated by mitochondria is based on robust methods for isolation and handling of intact mitochondria from tissues of the laboratory animals. Mitochondria from rat heart is one of the most common preparations for past and current studies of cellular metabolism including studies on knock-out animals.Here we describe a detailed rapid method for isolation of intact mitochondria with a high degree of coupling. Such preparation of rat heart mitochondria is an excellent object for functional and structural research on cellular bioenergetics, transport of biomolecules, proteomic studies and analysis of mitochondrial DNA, proteins and lipids.  相似文献   

10.
Maternal effects are ubiquitous in nature and affect a wide range of offspring phenotypes. Recent research suggests that maternal effects also contribute to ageing, but the theoretical basis for these observations is poorly understood. Here we develop a simple model to derive expectations for (i) if maternal effects on ageing evolve; (ii) the strength of maternal effects on ageing relative to direct environmental effects; and (iii) the predicted relationships between environmental quality, maternal age and offspring lifespan. Our model is based on the disposable soma theory of ageing, and the key assumption is thus that mothers trade off their own somatic maintenance against investment in offspring. This trade-off affects the biological age of offspring at birth in terms of accumulated damage, as indicated by biomarkers such as oxidative stress or telomere length. We find that the optimal allocation between investment in maternal somatic investment and investment in offspring results in old mothers and mothers with low resource availability producing offspring with reduced life span. Furthermore, the effects are interactive, such that the strongest maternal age effects on offspring lifespan are found under low resource availability. These findings are broadly consistent with results from laboratory studies investigating the onset and rate of ageing and field studies examining maternal effects on ageing in the wild.  相似文献   

11.
The pivotal role played by zinc-gene interaction in affecting some relevant cytokines (IL-6 and TNF-alpha) and heat shock proteins (HSP70-2) in ageing, successful ageing (nonagenarians) and the most common age-related diseases, such as atherosclerosis and infections, is now recognized. The polymorphisms of genes codifying proteins related to the inflammation are predictive on one hand in longevity, on the other hand they are associated with atherosclerosis or severe infections. Since the health life-span has a strong genetic component, which in turn also affected by nutritional factors like zinc, the association of these polymorphisms with innate immune response, zinc ion bioavailability and Metallothioneins (MT) homeostasis is an useful tool to unravel the role played by zinc-gene interactions in longevity, especially due to the inability of MT in zinc release in ageing and chronic inflammation. In ageing, this last fact leads to depressed innate immune response for host defence. In contrast, in very old age the inflammation is lower with subsequent more zinc ion bioavailability, less MT gene expression and satisfactory innate immunity. Therefore, the zinc-gene (IL-6, TNF-alpha, Hsp70-2) interactions, via MT homeostasis, are crucial to achieve successful ageing.  相似文献   

12.
Runko AP  Griswold AJ  Min KT 《FEBS letters》2008,582(5):715-719
In Friedreich's ataxia, reduction of the mitochondria protein frataxin results in the accumulation of iron and reactive oxygen species, which leads to oxidative damage, neurodegeneration and a diminished lifespan. Recent studies propose that frataxin might play a role in the antioxidative process. Here we show that overexpression of Drosophila frataxin in the mitochondria of female transgenic animals increases antioxidant capability, resistance to oxidative stress insults, and longevity. This suggests that Drosophila frataxin may function to protect the mitochondria from oxidative stresses and the ensuing cellular damage.  相似文献   

13.
Effect of temperature on the longevity of human fibroblasts in culture   总被引:1,自引:0,他引:1  
The longevity of parallel cultures of the human diploid fibroblast strain MRC-5 was measured at various incubation temperatures. At 37°C the mean life-span was 57.2 passages, at 34°C it was 58.7 passages and at 40°C it was 29.2 passages. There was greater variation in longevity among cultures grown at 40°C than in the control population and least among those grown at 34°C. The decreased life-span at 40°C was probably due to accelerated ageing, as the transfer of senescent cultures back to 37°C did not lead to their recovery. Cultures grown at 32°C also had reduced life-span compared to the control, but this was probably not the result of ageing, as the transfer of cultures which had almost ceased growth back to 37°C allowed them to reach the normal life-span for this temperature. The results imply that clonal ageing is at least in part due to random events—possibly errors in protein synthesis—which occur more frequently with increasing temperature.  相似文献   

14.
There are two different views on the evolution of life forms in Cormophyta: from woody plants to herbaceous ones or in opposite direction - from herbs to trees. In accordance with these views it is supposed that life span in plants changed in the course of evolution from many years (perennials) to few years (annuals, biennials), or went in reverse - from few years to many years. The author discusses the problems of senescence and longevity in Cormophyta in the context of various hypotheses of ageing (programmed death theory, mutation accumulation, antagonistic pleiotropy, disposable soma, genes of ageing, genes of longevity). Special attention is given to bio-morphological aspects of longevity and cases of non-ageing plants ("negative senescence", "potential immortality"). It is proposed to distinguish seven models of simple ontogenesis in Cormophyta that can exemplify the diversity of mechanisms of ageing and longevity. The evolution of life span in plants is considered as an indirect result of natural selection of other characteristics of organisms or as a consequence of fixation of modifications (episelectional evolution). It seems that short life span could emerge several times during evolution of one group of plants, thus favoring its adaptive radiation.  相似文献   

15.
Altered oxidative stress response of the long-lived Snell dwarf mouse   总被引:2,自引:0,他引:2  
Several single gene mutations in mice that increase the murine life span have been identified, including the Pit-1 mutation which results in the Snell dwarf (Pit1(dw/dw)), however, the biological mechanism of this life-span extension is still unclear. Based on studies that show oxidative stress plays an important role in the aging process, we hypothesized that the increased longevity seen in Snell dwarf mice may result from a resistance to oxidative stress. We report that Snell dwarf mice respond to oxidative stress induced by 3-NPA differently than their wild type littermates. This altered response results in diminished activation of the MEK-ERK kinase cascade and virtually no phosphorylation of c-Jun at Ser63 in dwarf mice after 3-NPA treatment, despite a robust phosphorylation of Ser63 in wild type mice. We propose that this altered management of oxidative stress in dwarf mice is partially responsible for the increased longevity in Snell dwarf mice.  相似文献   

16.
Metabolic control and ageing   总被引:5,自引:0,他引:5  
  相似文献   

17.
The oxidative phosphorylation process is dependent on the assembly of both the respiratory chain that generates the electrochemical potential of the mitochondrial inner membrane and the ATP synthase complex which uses this membrane potential to drive ATP synthesis. The five respiratory enzymes involved in this process, complexes I to V, are composed of multiple subunits, some of which are synthesized on mitochondrial ribosomes, whereas others are a product of the nucleocytoplasmic genetic system. The mitochondrial genome has a limited coding capacity and the co-ordinate expression of all the subunits forming these complexes has been shown to be under nuclear control. Present knowledge of complexes I to V mainly comes from studies of bovine and fungal mitochondria. If beef heart mitochondria represent a choice material for studying the composition and structure of these complexes, Saccharomyces cerevisiae and Neurospora crassa and their numerous respiratory mutants, are ideal organisms for investigating the co-ordination of nuclear and mitochondrial genomes in their assembly. The major reason for the interest in respiratory complexes and ATP synthase from the mitochondrial inner membrane in Homo sapiens and in higher plants is the relationship between enzyme deficiencies and human diseases and ageing on one hand, and such plant phenotypic abnormalities as cytoplasmic male sterility on the other.  相似文献   

18.
These special issues of Biological Signals and Receptors are intended to describe mitochondrial DNA damage, oxidative stress and human diseases, including neurodegenerative and neuromuscular diseases, disorders associated with aging, and ischemia-perfusion injury. Traditionally, mitochondria have been viewed as the 'powerhouse' of the cell, i.e., the site of the oxidative phosphorylation machinery involved in adenosine triphosphate (ATP) production. Consequently, much of the research conducted on mitochondria over the past 4 decades has focused on elucidating both those molecular events involved in ATP synthesis by oxidative phosphorylation and those involved in the biogenesis of the oxidative phosphorylation machinery. While monumental achievements have been made, and continue to be made, in the study of these remarkable but extremely complex processes essential for the life of most animal cells, it has been only in recent years that a large body of biological and biomedical scientists have come to recognize that mitochondria participate in other important processes. Two of these are cell death and aging which, not surprisingly, are related processes both involving, in part, the oxidative phosphorylation machinery. This new awareness has sparked a new and growing area of mitochondrial research that has become of great interest to a wide variety of scientists ranging from those involved in elucidating the role of mitochondria in cell death and aging to those interested in either suppressing or facilitating these processes as it relates to identifying new therapies or drugs for human disease.  相似文献   

19.
In every human cell there are hundreds of mitochondria, which are required for oxidative phosphorylation as well as many other metabolic processes. Each mitochondrion contains approximately 5 mitochondrial DNA molecules. These circular DNAs of 16.5 kb in size contain only 39 genes. Mutations in mitochondrial DNA are responsible for many diseases. Alterations in these molecules may also play a role in ageing and in tumour formation.  相似文献   

20.
Oxidative burst is a defense mechanism used by specialized phagocytes such as granulocytes or monocytes to kill the invading microorganisms through generation of superoxide anions. Oxidative burst also results in DNA damage of the phagocytes. Phagocytes are terminally differentiated and some of very short life-span cells. We could find no reports whether oxidative burst-mediated DNA damage triggers in such cells histone H2AX-Ser139 phosphorylation and activation of Ataxia Telangiectasia Mutated (ATM), the signals otherwise used to activate DNA repair and checkpoint pathways in proliferating cells. We now present the evidence that induction of oxidative stress in human peripheral blood leukocytes by phorbol myristate acetate (PMA) was associated with intense phosphorylation of histone H2AX and with ATM activation, seen already 60 min after exposure to PMA. The modifications of H2AX and ATM in individual granulocytes, monocytes and lymphocytes were detected prior to caspases activation and thus were unrelated to induction of apoptosis. A large intercellular variation in response was observed, and only a fraction of cells in these subpopulations showed H2AX and ATM modifications. The data are compatible with the earlier observations of DNA damage during oxidative burst and suggest that even in terminally differentiated cells that have a short life-span, DNA damage triggers recruitment of the DNA repair machinery. The observed H2AX phosphorylation in lymphocytes may reflect their DNA damage by the superoxide ions propagating from the neighboring granulocytes and/or monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号