首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
基于6年模拟氮沉降试验平台研究了氮沉降对温带草原凋落物质量的影响。采集对照(0 g N·m~(-2)·a~(-1))、低氮(5 g N·m~(-2)·a~(-1))、中氮(10 g N·m-2·a-1)和高氮(15g N·m~(-2)·a~(-1))4个氮添加梯度,混合和单一两种凋落物类型,测定了凋落物纤维素、半纤维素、木质素、全碳、全氮和全磷含量。结果表明:长期模拟氮沉降降低了2种凋落物中纤维素、半纤维素、木质素含量及其与N素的比值;氮沉降对凋落物C含量无明显影响,降低了凋落物N、P含量以及C/N和C/P比值。由于氮沉降增加了凋落物N、P元素含量,同时降低了难分解的结构性物质含量,因此可能会对凋落物分解产生促进作用。  相似文献   

2.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

3.
樟树人工林凋落物养分含量及归还量对氮沉降的响应   总被引:3,自引:0,他引:3  
赵晶  闫文德  郑威  李忠文 《生态学报》2016,36(2):350-359
氮沉降的持续增加对陆地生态系统的健康发展构成严重威胁,森林是陆地生态系统中重要的组成部分,大量的氮沉降对其结构和功能造成严重影响。凋落物是森林生态系统养分循环的重要组成部分,它对土壤肥力、森林生态系统养分循环等方面具有重要作用。为了探讨亚热带常绿阔叶森林凋落物对氮沉降增加的响应,在湖南省森林植物园以樟树人工林为研究对象进行模拟氮沉降的实验,实验设置4种氮添加水平CK(0g N m~(-2)a~(-1),对照)、LN(5g N m~(-2)a~(-1)),MN(15g N m~(-2)a~(-1)),HN(30g N m~(-2)a~(-1)),研究氮沉降对樟树林年凋落物量、凋落物养分含量以及归还量的影响。结果表明:不同施氮水平下(CK、LN、MN、HN),樟树林凋落物的年凋落量分别为(4.53±0.32)t hm~(-2)a~(-1)、(3.95±0.28)t hm~(-2)a~(-1)、(3.56±0.41)t hm~(-2)a~(-1)、(4.46±0.48)t hm~(-2)a~(-1),施氮抑制了樟树林的凋落量,且低、中氮处理下差异显著(P0.05);施氮处理后凋落物的养分含量大小顺序为:CNCaKMg,凋落物的碳含量没有显著变化,但氮含量都有所增加,因此,施氮降低了樟树凋落物各组分的C/N比;凋落物中元素的年归还量大小顺序表现为:CNCaKMg,施氮处理对凋落物C、K、Ca、Mg归还量有抑制作用,但对凋落物N归还量表现为促进作用。  相似文献   

4.
魏圣钊  赵倩  廖泯权  周世兴  何聪  王雷  黄从德 《生态学报》2018,38(22):8001-8007
为进一步深化氮沉降对凋落物分解影响的研究,2016年3月—2017年3月,在华西雨屏区天然常绿阔叶林内,用凋落叶分解袋法研究了模拟氮沉降对凋落叶分解过程中微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物生物量磷(MBP)的影响。实验设置了对照(0 g N m~(-2)a~(-1))、低氮(5 g N m~(-2)a~(-1))、中氮(15 g Nm~(-2)a~(-1))和高氮沉降(30 g N m~(-2)a~(-1)) 4个处理。结果表明:低氮和中氮处理显著增加了凋落叶分解过程中的MBC和MBN,以低氮处理增加幅度最高;低氮和中氮处理对凋落叶分解过程中的MBP影响不显著;高氮处理显著降低了分解过程中的MBC、MBN和MBP。随模拟氮沉降量的递增,凋落叶分解过程中微生物生物量碳氮比逐渐减少,微生物生物量碳磷比呈现先增加后下降的趋势。研究结果说明,氮沉降影响了华西雨屏区天然常绿阔叶林凋落物分解过程中微生物生物量,进而改变了凋落物的分解过程。  相似文献   

5.
模拟氮沉降对落叶松人工林土壤呼吸的影响   总被引:1,自引:0,他引:1  
在东北林业大学帽儿山实验林场26年生落叶松人工林中,连续2年(2013~2014年)施加NH_4NO_3模拟氮沉降试验((对照(CK,0 g·m~(-2)·a~(-1)N)、低氮(N1,5 g·m~(-2)·a~(-1)N)、中氮(N2,10 g·m~(-2)·a~(-1)N)、高氮(N3,15 g·m~(-2)·a~(-1)N)),研究不同氮沉降水平对土壤呼吸的影响。结果表明:(1)2013年模拟氮沉降处理均促进年平均土壤呼吸速率(P0.05);(2)2014年中氮和高氮处理抑制年平均土壤呼吸和异养呼吸速率(P0.05),低氮处理促进年均土壤呼吸速率(P0.05),对异养呼吸速率影响不显著(P0.05);(3)土壤微生物生物量碳在低氮处理下显著提高(P0.05),在中氮和高氮处理下与对照间差异不显著(P0.05);(4)土壤呼吸速率与5和10 cm土壤温度呈指数正相关关系(P0.01),相比对照,各土层土壤呼吸温度敏感系数(Q_(10))均在低氮处理下增加,在中氮和高氮处理下则降低。不同水平的模拟氮沉降改变了土壤呼吸速率及其温度敏感性,表明短期内低水平氮沉降可加快土壤碳排放过程,相对较高水平氮沉降则减缓土壤碳排放过程。  相似文献   

6.
为揭示长期施氮对油松林凋落物量的影响,在山西省太岳山油松天然林和人工林中进行了长达7年的氮添加控制试验,包括对照(CK)、低氮(LN)、中氮(MN)和高氮(HN)4个水平,分别为0、50、100、150 kg N·hm~(-2)·a~(-1)。于2015—2016年对不同处理的凋落物产量组分的月动态进行监测。凋落物产量组分主要分为叶、枝、果、花、皮、杂物(动物残体、芽鳞、碎屑等统称)。结果表明,施氮显著提高了天然林年均凋落物量:HN(3.69 t·hm~(-2)·a~(-1))MN(3.12 t·hm~(-2)·a~(-1))LN(3.02 t·hm~(-2)·a~(-1))CK(2.68 t·hm~(-2)·a~(-1));而人工林年均凋落物量随N添加水平呈现出先升后降的趋势:LN(3.11 t·hm~(-2)·a~(-1))CK(3.08t·hm~(-2)·a~(-1))MN(2.92 t·hm~(-2)·a~(-1))HN(2.60 t·hm~(-2)·a~(-1))。这表明过量的氮输入会降低人工林凋落物的产量。年均叶凋落量所占比重最大,达总凋落量的68.3%~75.4%,果凋落量占总凋落量的6.7%~17.8%。方差分析表明,氮添加处理对叶、果和皮凋落量具有显著影响。凋落物月动态表现为双峰型,高峰期在6月份和10月份。总之,在天然林中,凋落物产量随着施氮浓度的增加显著升高(P0.001);在人工林中,施氮处理未对凋落物产量产生显著影响(P0.05)。  相似文献   

7.
模拟氮沉降凋落物管理对樟树人工林土壤呼吸的影响   总被引:1,自引:0,他引:1  
陈毅  闫文德  郑威  廖菊阳  盘昱良  梁小翠  杨坤 《生态学报》2018,38(21):7830-7839
以湖南省植物园樟树人工林为对象,研究了模拟氮沉降下,不同凋落物处理对土壤呼吸的影响。设置4个施氮水平,分别为CK(0 kg N hm~(-2)a~(-1))、LN(50 kg N hm~(-2)a~(-1))、NM(150 kg N hm~(-2)a~(-1))以及HN(300 kg N hm~(-2)a~(-1));凋落物处理分别为去除凋落物、添加凋落物以及凋落物对照组。经过为期2年的观测研究,结果表明:(1)模拟氮沉降不同凋落物处理下,土壤温度呈现显著的季节性变化,但不存在显著差异;土壤湿度呈现显著的波动性变化,施氮及凋落物管理对土壤温度无影响。土壤湿度仅受凋落物管理的影响。在不同施氮水平下,去除凋落物的土壤湿度与加倍凋落物的土壤湿度均存在显著差异性。(2)模拟氮沉降不同凋落物处理下,土壤呼吸均呈现显著的季节性变化,最大值出现在6—8月;最小值出现在1月,且在生长季期间(4—8月),不同处理下土壤呼吸存在显著差异。(3)施氮对土壤呼吸表现为抑制作用,添加凋落物对土壤呼吸起促进作用,去除凋落物对土壤呼吸起抑制作用。(4)在凋落物对照组中,LN、MN、HN较CK相比,土壤呼吸速率年均值分别降低了35.4%、30.6%、36.8%,且各施氮水平与CK存在显著差异(P0.05);添加凋落物处理下,LN、MN、HN处理较CK相比,土壤呼吸速率年均值土壤呼吸分别降低了23.2%、15.8%、14.7%。去除凋落物处理下,LN、MN、HN较CK相比,土壤呼吸速率年均值分别降低了3.5%、0.5%、-11.6%。且添加或去除凋落物均能削弱施氮对土壤呼吸的抑制作用,且这种作用随着施氮水平的增加而增大。(5)土壤呼吸与5 cm处土壤温度存在显著相关性(P0.05),土壤温度可解释土壤呼吸变异的47.76%—72.61%;与土壤湿度呈现正相关,但未达到显著相关水平(P0.05)。  相似文献   

8.
模拟氮沉降对华西雨屏区苦竹林凋落物基质质量的影响   总被引:2,自引:0,他引:2  
凋凋落物基质质量是影响凋落物分解速率的决定性因子之一,本研究旨在探究模拟氮沉降对苦竹林凋落物基质质量的影响。2007年11月至2010年12月每月一次连续对华西雨屏区苦竹人工林进行了模拟氮沉降试验,施氮水平分别为:低氮(5 g N?m–2?a–1),中氮(15 g N?m–2?a–1)和高氮(30 g N?m–2?a–1)。在施氮2 a后,于2010年1月开始收集各样方的凋落物样品,连续收集12个月,分析测定凋落物基质质量。结果表明:施氮显著增加了凋落叶中N、P元素含量,中氮处理显著增加了凋落枝中N元素含量,中氮和高氮处理均显著增加了凋落枝中P元素含量;施氮对凋落物中C元素含量影响很微弱,显著降低了凋落叶中的C/N,中氮处理显著降低了凋落枝中的C/N,对木质素和纤维素含量均未造成显著影响。由于模拟氮沉降增加了苦竹凋落物的N、P含量,降低了其C/N,因此氮沉降可能会促进苦竹凋落物的初期分解速率。  相似文献   

9.
华西雨屏区苦竹细根分解对模拟氮沉降的响应   总被引:1,自引:0,他引:1  
森林细根分解是陆地生态系统碳循环的重要过程之一,其分解速率受到大气氮沉降增加的潜在影响.2007年11月至2013年1月,对华西雨屏区苦竹人工林进行每月1次的模拟氮沉降试验,设对照(CK,0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)4个处理.2011年1月起,采用分解袋法研究苦竹细根分解.结果表明:苦竹细根分解呈现出先快后慢的趋势,在分解第1年质量损失达60%,分解第2年质量残留率变化较为平缓.对照处理细根质量损失50%和95%分别需要1.20和5.17 a.总体上,负指数模型低估了各处理细根分解速率.模拟氮沉降显著抑制了苦竹细根分解,相对于对照,高氮处理细根在分解2 a后残留量增加51.0%.模拟氮沉降显著增加了凋落物碳、氮和磷元素的残留率.与对照相比,模拟氮沉降处理4.5 a后,中氮和高氮处理土壤pH值显著降低,高氮处理土壤有机碳、总氮、铵态氮和硝态氮含量以及苦竹细根生物量显著增加.  相似文献   

10.
氮添加及凋落物管理对樟子松人工林土壤理化性质的影响   总被引:2,自引:0,他引:2  
氮沉降和凋落物量的改变是全球变化影响森林生态系统的重要途径,然而二者的交互作用对土壤生态过程的影响仍知之甚少。本文研究氮添加(对照和添加10 gN·m~(-2)·a~(-1))和地表凋落物管理(对照、移除和加倍)对科尔沁沙地樟子松人工林干季(5月)和湿季(8月)土壤有效氮、基础呼吸和有效磷等的影响。结果表明:凋落物管理对土壤的影响在对照和氮添加样地中差异较大;在对照样地中,凋落物移除和加倍都显著提高了8月土壤呼吸,对有效磷和氮含量基本上无显著影响;在氮添加样地,凋落物移除与加倍均未影响土壤呼吸和有效磷含量,但显著降低有效氮含量;氮添加和凋落量变化的影响在湿季大于干季;单一的氮添加显著降低了8月的土壤有效磷含量和土壤呼吸,而凋落物量加倍减缓了氮沉降对土壤呼吸的抑制和磷限制性的加剧。  相似文献   

11.
模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响   总被引:4,自引:0,他引:4  
凋落物是土壤呼吸的重要碳源,氮沉降将改变其输入数量和质量,进而影响土壤呼吸。为揭示氮沉降和去除凋落物对土壤呼吸的影响,以太岳山油松林为研究对象,对林地分别作2种凋落物处理:去除凋落物(LR)、对照(CK1),设计4个施氮水平:不施氮(CK2,0 kg N·hm-2·a-1),低氮(LN,50 kg N·hm-2·a-1),中氮(MN,100 kg N·hm-2·a-1)和高氮(HN,150 kg N·hm-2·a-1),于2010—2012年生长季测定土壤呼吸速率的动态变化,并分析土壤呼吸速率与土壤温度、土壤湿度、土壤微生物生物量C、N的关系。结果表明:随着观测年限的推移,模拟氮沉降对对照处理的土壤呼吸速率、去凋处理的土壤呼吸速率、凋落物层呼吸速率的促进作用逐渐减弱。去除凋落物使土壤呼吸速率降低了29.0%,施氮减小了去除凋落物后土壤呼吸速率的变化幅度。土壤呼吸速率与土壤温度均呈显著指数相关(P0.05),土壤温度解释了土壤呼吸速率变异的37.3%~62.2%,去除凋落物降低了模型决定系数R2;以土壤温度和土壤水分构建的复合关系方程拟合效果均好于单因子模型,土壤温度和水分共同解释了土壤呼吸季节变化的67.6%~85.6%,并且施氮降低了去凋处理的复合模型决定系数R2,而对对照处理没有显著影响。施氮提高了土壤微生物生物量C、N,并且土壤微生物生物量C、N与土壤呼吸速率呈显著正相关(P0.05)。说明氮沉降、凋落物是影响油松林土壤CO2通量的两个重要因子。  相似文献   

12.
模拟大气氮沉降对温带森林土壤微生物群落结构的影响   总被引:1,自引:0,他引:1  
本研究以温带森林土壤为研究对象,设置野外模拟氮沉降实验,分析不同施氮形态和施氮水平对微生物群落结构的影响。试验设置对照(Control,0 kg N·hm~(-2)·a~(-1))、混合态低氮(NH_4NO_3,50 kg N·hm~(-2)·a~(-1))、混合态高氮(NH_4NO_3,150 kg N·hm~(-2)·a~(-1))、铵态氮低氮((NH_4)_2SO_4,50 kg N·hm~(-2)·a~(-1))、铵态氮高氮((NH_4)_2SO_4,150 kg N·hm~(-2)·a~(-1))、硝态氮低氮(NaNO_3,50 kg N·hm~(-2)·a~(-1))、硝态氮高氮(NaNO_3,150 kg N·hm~(-2)·a~(-1))7种氮处理,持续施氮3年后,运用磷脂脂肪酸(PLFA)法对土壤微生物群落结构进行测定。结果表明:在不同水平的氮添加下,土壤微生物总量、细菌、土壤革兰阳性细菌(G+细菌)、土壤革兰阴性细菌(G-细菌)和真菌的PLFA含量均随施氮水平的增加而升高;在不同形态的氮添加下,混合态氮添加提高了微生物总量、细菌、真菌和放线菌的PLFA含量。主成分分析(PCA)表明,除铵态氮低氮添加样地外,其他氮添加处理样地中的土壤微生物结构都发生了改变。这些结果表明,模拟大气氮沉降初期,氮添加会增加温带森林土壤微生物生物量,达到一定水平后会改变土壤微生物群落结构。  相似文献   

13.
文海燕  傅华  郭丁 《生态学报》2017,37(6):2014-2022
利用原位分解袋法研究了黄土高原典型草原优势植物长芒草(Stipa bungeana)和阿尔泰狗娃花(Heteropappus altaicus)凋落物的养分释放过程对氮添加的响应,试验周期为1 a。设置6个氮添加水平,分别为N0(0)、N1(1.15 g N m~(-2)a~(-1))、N2(2.3 g N m~(-2)a~(-1))、N3(4.6 g N m~(-2)a~(-1))、N4(9.2 g N m~(-2)a~(-1))和N5(13.8 g N m~(-2)a~(-1)),氮素类型为尿素((NH_2)_2CO)。结果表明:(1)氮添加处理两年显著改变了长芒草和阿尔泰狗娃花凋落物的初始化学性质。随着氮梯度的增加,凋落物的N(氮)含量逐渐增加,木质素含量先增加后下降,C/N(碳氮比)和木质素/N降低,C(碳)、P(磷)和C/P(碳磷比)没有显著的差异。(2)氮处理对长芒草和阿尔泰狗娃花凋落物的分解速率的影响不显著。长芒草和阿尔泰狗娃花凋落物C含量随分解时间整体为降低过程,N和P含量总体上为增加过程,且整个分解过程中N含量各处理间差异显著。(3)氮处理对长芒草和阿尔泰狗娃花凋落物C和P的分解基本无影响,两种元素都呈现释放过程。氮处理对凋落物的N残留率有显著的影响,在N1—N3(1.15—4.6 g/m~2)处理下的长芒草凋落物N残留率高于其他处理,且呈现富集过程;而阿尔泰狗娃花凋落物中的N呈现富集-释放过程。在土壤养分贫瘠的黄土高原典型草原,适量的氮输入可以促进系统的固氮。  相似文献   

14.
通过连续6年对盆栽油松(Pinus tabuliformis)幼苗进行不同水平N添加(0、2.8、5.6、11.2、22.4和44.8 g N·m~(-2)·a~(-1)),研究了N添加对土壤酶活性(蔗糖酶、脲酶和碱性磷酸酶)和微生物生物量碳、氮的影响。结果表明:N添加水平低于11.2 g N·m~(-2)·a~(-1)时,对油松幼苗土壤蔗糖酶和脲酶活性均有促进作用,但过量N添加,尤其超过22.4 g N·m~(-2)·a~(-1)时,蔗糖酶、脲酶和碱性磷酸酶活性均不再提高,甚至表现为抑制作用;N添加为5.6 g N·m~(-2)·a~(-1),微生物生物量碳显著增加,微生物生物量氮无显著变化,而当N添加达到11.2 g N·m~(-2)·a~(-1)时,微生物生物量氮呈显著增加的趋势;土壤蔗糖酶、脲酶活性与微生物生物量碳和微生物生物量氮间均有显著相关关系,而3种酶活性间、微生物生物量碳、氮间均无显著相关性;土壤酶活性和微生物生物量与地上生物量、土壤有机碳和全氮含量显著相关。油松在5.6~11.2 g N·m~(-2)·a~(-1)水平下生长达到最佳。目前黄土高原地区N沉降水平(2.06 g N·m~(-2)·a~(-1))有利于该地区油松林生长;可以通过适当增施N肥的方式提高油松生长。  相似文献   

15.
通过模拟N沉降实验,设置对照(CK,0 g N m~(-2)a~(-1));低氮(LN,5 g N m~(-2)a~(-1));中氮(MN,10 g N m~(-2)a~(-1));高氮(HN,15 g N m~(-2)a~(-1))4种N处理,以NH_4NO_3为外源N来研究福建省三明格氏栲自然保护区内板栗人工林、观光木人工林及米槠天然林0—10 cm土层养分变化动态。结果表明:N沉降会使板栗人工林土壤显著酸化,P含量降低,在一些时间段内,中高水平的N沉降会显著降低有机C、全N和速效N含量,中或低水平N沉降会显著降低土壤全P和速效P含量,而从第6个月起只有LN处理会显著降低土壤K含量。N沉降总体上会不同程度地提高观光木人工林土壤p H值、有机C、全N和速效N含量,有时影响会达显著或极显著水平;比较而言,LN和HN处理更会造成土壤全P的富集,而MN处理对速效P的影响更显著;LN和HN处理也会显著增加K含量,且以LN处理的效果更稳定。总体上N沉降量越大米槠天然林土壤酸化越显著;N沉降会使其有机C和速效P量显著波动;实验期间,HN处理会显著降低土壤全N和速效N量,而LN与MN处理则会使速效N和K含量增加;在4种处理下全P含量会呈相同趋势波动,差异不显著。  相似文献   

16.
为理解氮沉降对华西雨屏区天然常绿阔叶林凋落物分解过程的影响,采用立地控制实验和凋落物分解袋法,研究了低氮沉降(L,50 kg N hm~(-2)a~(-1))、中氮沉降(M,150 kg N hm~(-2)a~(-1))和高氮沉降(H,300 kg N hm~(-2)a~(-1))对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响。结果表明:N沉降抑制了凋落叶的分解,并随着N沉降量的增加,抑制作用增强。N沉降遏制了凋落叶的C、N释放和纤维素降解,促进了P释放。N沉降提高了凋落叶的C/P比,中氮和高氮处理提高了凋落叶C/N比。N沉降显著增加了凋落叶N、木质素和纤维素的含量,分解1年后,各N沉降处理的木质素/N和纤维素/N均显著高于对照。N沉降提高了质量残留率与C/N、木质素/N和纤维素/N的相关性,降低了与C/P的相关性。可见,模拟N沉降显著影响了华西雨屏区天然常绿阔叶林凋落叶分解过程中的基质质量,进而影响了凋落叶的分解过程。  相似文献   

17.
为探究不同频率氮素添加模拟大气氮沉降对桤木人工林生态系统碳储量的影响, 采用野外固定样地观测的方法, 研究1年12次氮素添加(高频率)和1年2次氮素添加(低频率), 对桤木人工林生态系统乔木层、林下植被层、凋落物层、土壤层生物量及碳储量的影响。经过3年不同氮沉降模拟实验, 结果表明: (1) 高频与低频施氮均能增加桤木叶、枝、皮、根、总生物量及碳储量, 其中高频施氮显著增加根生物量及碳储量, 较对照增加了22.98%、24.05%; 而低频施氮显著增加叶、干生物量及枝、叶碳储量。(2) 低频与高频施氮均显著降低了桤木林下植被生物量及碳储量, 较对照分别降低67.95%、83.97%和79.73%、70.27%, 对碳含量影响不显著。(3)高频与低频施氮均显著增加L层(0—20 cm)凋落物生物量及L层和F层(20—40 cm)凋落物碳储量, 且高频施氮>低频施氮; 低频施氮显著降低20—40 cm土壤碳储量, 较对照降低20.83%, 高频施氮则对土壤碳含量和土壤碳储量无显著影响。高频施氮显著增加桤木林人工生态系统中凋落物层碳储量, 显著降低林下植被层碳储量, 生态系统总碳储量增加; 低频施氮显著降低乔木层、林下植被层和凋落物层碳储量, 导致桤木林生态系统碳储量降低, 但两种处理影响均不显著。  相似文献   

18.
为探究灌丛生态系统对大气氮沉降的响应,2013年1月至2014年9月,对湖南大围山杜鹃(Rhododendron simsii)灌丛群落进行了短期模拟氮沉降试验,施氮浓度分别为0(CK)、2(LN)、5(MN)和10(HN)g·m~(–2)·a~(–1)。利用LI-8100土壤碳通量测量系统测定土壤呼吸速率,并测定不同氮处理下根系生物量增量和凋落物量。结果表明:该地区土壤呼吸呈现明显的季节动态,夏季土壤呼吸最强,冬季最弱。CK、LN、MN和HN处理样地每年通过土壤呼吸释放的CO_2量分别为2.37、2.79、2.26和2.30 kgCO_2·m~(–2)。CK、LN、MN和HN处理下,年平均土壤呼吸速率分别为1.71、2.01、1.63和1.66μmol CO_2·m~(–2)·s~(–1),LN处理样地的年均土壤呼吸速率与对照样地相比增加了17.25%,MN和HN处理则比对照样地稍低。施氮增加了根系生物量增量和凋落物量,但没有达到显著水平。土壤呼吸速率与5 cm土壤温度呈显著指数相关关系,与5 cm土壤的含水量呈显著线性相关关系。CK、LN、MN和HN处理下,土壤呼吸的温度敏感性(Q_(10))值分别为3.96、3.60、3.71和3.51,表明施氮降低了温度敏感性。氮添加导致的根系生物量增加是引起该区域土壤呼吸速率变化的一个重要原因。  相似文献   

19.
为探究不同质量凋落物对氮(N)沉降的响应,该研究采用尼龙网袋分解法,在亚热带福建三明格氏栲(Castanopsis kawakamii)自然保护区的米槠(Castanopsiscarlesii)天然林,选取4种本区常见的具有不同初始化学性质的树种凋落叶进行模拟N沉降(N添加)分解实验(施N水平为对照0和50 kg·hm~(–2)·a~(–1))。研究结果表明:在2年的分解期内,对照处理的各树种凋落叶的分解速率依次为观光木(Michelia odora, 0.557 a~(–1))、米槠(0.440 a~(–1))、台湾相思(Acacia confusa, 0.357 a~(–1))、杉木(Cunninghamia lanceolata, 0.354 a~(–1)); N添加处理凋落叶分解速率依次为观光木(0.447 a~(–1))、米槠(0.354 a~(–1))、杉木(0.291 a~(–1))、台湾相思(0.230a~(–1)),除杉木凋落叶外, N添加显著降低了其他3种凋落叶分解速率。N添加不仅使4种树木凋落叶分解过程中的N释放减慢,同时还抑制凋落叶化学组成中木质素和纤维素的降解;N添加在凋落叶分解过程中总体上提高β-葡萄糖苷酶(βG)和酸性磷酸酶活性,对纤维素水解酶的活性影响不一致,而降低β-N-乙酰氨基葡萄糖苷酶活性和酚氧化酶活性。凋落叶分解速率与凋落叶中的碳获取酶(βG)活性以及其化学组分中的可萃取物含量极显著正相关,与初始碳浓度、纤维素和木质素含量极显著负相关,与初始N含量没有显著相关性。凋落物类型和N添加的交互作用虽未影响干质量损失速率,但对木质素和纤维素的降解具有显著效应。综上所述,化学组分比初始N含量能更好地预测凋落叶分解速率,而N添加主要通过抑制分解木质素的氧化酶(如PHO)来降低凋落叶分解速率。  相似文献   

20.
利用原位分解袋法研究了华西雨屏区苦竹(Pleioblastus amarus)和撑绿杂交竹(Bambusa pervariabilis × Dendrocala mopsi)人工林几种凋落物组分在模拟氮沉降下分解过程中养分释放状态,试验周期为2 a。氮沉降水平分别为对照(CK, 0 g · m-2 · a-1)、低氮(5 g · m-2 · a-1)、中氮(15 g · m-2 · a-1)和高氮(30 g · m-2 · a-1),每月下旬定量地对各处理施氮(NH4NO3)。结果表明,苦竹林和杂交竹林凋落物主要由凋落叶、凋落箨和凋落枝组成,其中凋落叶约占80%;两个竹种凋落物在分解过程中养分元素释放的种间差异主要与初始养分元素含量有关;凋落物养分元素初始含量对元素释放模式和最终净释放率的大小具有重要的决定作用;目前,这两种竹林生态系统土壤氮输入主要以大气氮沉降(8.24 g · m-2 · a-1)为主,同时凋落物氮输入(苦竹和杂交竹林分别为1.93,5.07 g · m-2 · a-1)也是一个重要途径;模拟氮沉降对苦竹凋落物碳、磷、钾、钙元素和杂交竹凋落物碳、氮、磷、钾、钙、镁元素释放的抑制作用较弱,处理与对照之间元素总释放率差异一般小于10%;氮沉降显著抑制了苦竹林凋落物氮元素释放,减小幅度为19.0%-27.2%,但由于氮沉降增加对土壤肥力的直接改良作用,氮沉降的增加并不会因为凋落物分解速率的降低造成植物生长所需养分供应的减少;从短期来看,在氮沉降继续增加的情况下,该地区这类竹林生态系统的碳吸存能力仍可能会因为N沉降对植物生长的促进作用而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号