首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest fragmentation represents a threat to several bird species worldwide. Several factors can change across seasons (e.g. bird perception of the landscape, weather conditions, biotic interactions), which can modify the response of bird populations to forest fragmentation. However, most studies have been conducted only during the breeding season. Here we assessed the relationship between forest fragmentation (patch area and patch isolation) with population abundances of resident species during both the breeding and the non-breeding seasons. Bird population abundances (all species in the community, subsets of forest and habitat generalist species and for individual species) were estimated across a gradient of area-isolation in a semi-arid forest in Cordoba, Argentina. Population abundance of the overall avian community and of the subset of forest species declined with patch area reduction independently of the season. By contrast, the subset of habitat generalist species was not affected by patch area reduction or by the increase in patch isolation, either during the breeding or during the non-breeding season. When the analyses were carried out for individual species, we found four forest species and one habitat generalist species whose responses (the relationship between population abundance and patch area or with isolation) were different between breeding and non-breeding seasons. The negative effects of forest fragmentation were found mainly during the breeding season. Our results suggest that reduction of patch area may lead to a reduction of more than 65% of the population abundance of forest bird species, during both the breeding and the non-breeding season. Therefore, there is an urgent need to conserve large forest patches within the region as irreplaceable elements for the conservation of populations of several species.  相似文献   

2.
《Ecography》2003,26(5):641-651
Elements of the landscape, such as patches of preferred habitat, matrix between patches, and corridors linking patches, differ as movement habitat for animals. To understand how landscape structure influences the movement and thus, population dynamics of animals, clear empirical knowledge on patterns of movement is needed. The Siberian flying squirrel inhabits spruce-dominated boreal forests from Finland to eastern Siberia. Numbers of flying squirrels have declined severely in Finland in past decades, probably due to modern forestry. We studied the movement of radio-collared adult flying squirrels in preferred (spruce forest) and in matrix habitat (open areas and other habitats with trees) in Finland 1997–2000, and determined whether the woodland strips connecting patches of preferred habitat could function as ecological corridors for flying squirrels.
Flying squirrels used woodland strips for inter-patch movements, but also used matrix with trees and were able to cross narrow open gaps. Males moved longer total distances and crossed edges more often than females. Males used matrix habitats for movement between spruce patches, and moved faster and more directly in the matrix than in the spruce forest. Females seldom changed spruce patches, but instead used the matrix for foraging. For both sexes probability of leaving the spruce forest patch correlated negatively with the size of the patch, but the type of connection the patch had to other patches did not affect the leaving probability. Due to efficient movement abilities of the flying squirrel and forest-dominated landscape structure of southern Finland, we suggest that conservation acts for maintaining viable populations of flying squirrels should focus on the quality of managed forest and the area of suitable breeding habitat (i.e. on habitat loss), but not necessarily on ecological corridors.  相似文献   

3.
Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings.  相似文献   

4.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

5.
The timing of settlement decisions likely influences the quality of breeding site choices.This is particularly the case in migratory birds, because the conditions that enhance breeding success are often not apparent upon arrival after migration. A strategy that addresses this problem is to adjust settlement decisions when reliable information becomes available. We used a new indirect method – dynamic site occupancy modeling – to estimate apparent movement of black‐throated blue warblers Dendroica caerulescens among sites within a breeding season. Because individuals should disperse to sites that maximize their fitness, we hypothesized that warblers would move up a habitat quality gradient when opportunities arose. For our study species, that would involve moving into sites with greater shrub density and at higher elevation within northern hardwoods forest, as these two features are positively correlated with reproduction and apparent survival in this species. Although the probability of site occupancy in our study landscape remained consistent throughout the breeding season (range: 0.66–0.69), occupancy models revealed substantial support for apparent movement of individuals within the breeding season. The mean probability of emigration from a point count site was 0.21 (±0.03 SE), and the mean probability of immigration to a site not previously occupied was 0.51 (±0.05 SE). The spatial distribution of this movement was a function of habitat quality. A portion of the black‐throated blue warbler population appears to arrive on the breeding grounds and settle initially in sub‐optimal habitat, moving subsequently into high quality densely shrubbed habitat at higher elevations. This modeling approach provides a new means to test hypotheses about habitat selection and movement by using presence–non‐detection data.  相似文献   

6.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

7.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

8.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

9.
AIM: Our objective was to identify the distribution of the endangered golden-cheeked warbler (Setophaga chrysoparia) in fragmented oak-juniper woodlands by applying a geoadditive semiparametric occupancy model to better assist decision-makers in identifying suitable habitat across the species breeding range on which conservation or mitigation activities can be focused and thus prioritize management and conservation planning. LOCATION: Texas, USA. METHODS: We used repeated double-observer detection/non-detection surveys of randomly selected (n = 287) patches of potential habitat to evaluate warbler patch-scale presence across the species breeding range. We used a geoadditive semiparametric occupancy model with remotely sensed habitat metrics (patch size and landscape composition) to predict patch-scale occupancy of golden-cheeked warblers in the fragmented oak-juniper woodlands of central Texas, USA. RESULTS: Our spatially explicit model indicated that golden-cheeked warbler patch occupancy declined from south to north within the breeding range concomitant with reductions in the availability of large habitat patches. We found that 59% of woodland patches, primarily in the northern and central portions of the warbler's range, were predicted to have occupancy probabilities ≤0.10 with only 3% of patches predicted to have occupancy probabilities >0.90. Our model exhibited high prediction accuracy (area under curve = 0.91) when validated using independently collected warbler occurrence data. MAIN CONCLUSIONS: We have identified a distinct spatial occurrence gradient for golden-cheeked warblers as well as a relationship between two measurable landscape characteristics. Because habitat-occupancy relationships were key drivers of our model, our results can be used to identify potential areas where conservation actions supporting habitat mitigation can occur and identify areas where conservation of future potential habitat is possible. Additionally, our results can be used to focus resources on maintenance and creation of patches that are more likely to harbour viable local warbler populations.  相似文献   

10.
In Fennoscandian boreal forests, aspen (Populus tremula) is one of the most important tree species for biodiversity. In this study we explore how occupancy and density of beetles associated with dead aspen are related to habitat patch size and connectedness in a 45,000 ha boreal managed forest landscape in central Sweden. Patch size was estimated as amount of breeding substrate and connectedness as crown cover of living aspen in the surrounding landscape. The beetles were sampled by sieving of bark or by inspection of species-characteristic galleries in 56 patches with dead aspen. Six of nine aspen-associated species (Xylotrechus rusticus, Ptilinus fuscus, Mycetophagus fulvicollis, Cyphaea curtula, Homalota plana and Endomychus coccineus) showed a positive significant relationship between habitat patch size and occupancy. For all these species, except C. curtula, there was also a significant positive relationship between patch size and density. Connectedness was not retained as a significant variable in the analyses. Species not defined as aspen-associated constituted a significantly larger proportion of the total density of individuals of saproxylic beetles in smaller habitat patches than in larger patches. Richness of aspen-associated species was positively related to habitat patch size. Efforts in the managed forest should be directed towards preserving and creating larger patches of living and dead aspen trees and increasing the amount of aspen at the landscape level.  相似文献   

11.
Although improving the quality of habitat patches in fragmented landscapes is a main conservation target few studies have examined patch management in relation to the surrounding landscape. Tackling such an issue needs a cross-scale approach that takes the hierarchical nature of landscapes into account. Here I show the results of a cross-scale study focusing on the distribution patterns of ten forest vertebrate species (birds and mammals). The overarching goal of this study was to understand the strength of patch scale determinants of distribution, following the appropriate control for relevant landscape properties (e.g. habitat loss vs. habitat subdivision). I show how, after controlling for uncertainty in the detection of the species and for the role of landscape properties, patch scale variables still played an important role in determining occupancy patterns of forest vertebrates. For some species variation in the values of patch structure variables increased occurrence probability with only moderate levels of habitat loss, highlighting the fact that habitat management should be targeted towards precise landscape conditions. In other cases the effect of patch variables was strong therefore variation in their values always brought substantial increase/decrease of presence probability. Overall these results strongly suggest that habitat management should never be carried out irrespective of the properties of the surrounding landscape, rather, it should be carefully targeted towards specific landscape contexts (e.g. above a certain amount of habitat) where it is more likely to be effective.  相似文献   

12.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

13.
ABSTRACT Red-shouldered hawks (Buteo lineatus) are a species of special conservation concern in much of the Great Lakes region, and apparent population declines are thought to be primarily due to habitat loss and alteration. To evaluate red-shouldered hawk-habitat associations during the nesting season and at the landscape scale, we conducted repeated call-broadcast surveys in central Minnesota, USA, across 3 landscapes that represented a range of landscape conditions as a result of differing management practices. In 2004, we conducted repeated call-broadcast surveys at 131 locations in 2 study areas, and in 2005, we surveyed 238 locations in 3 study areas. We developed models relating habitat characteristics at 2 spatial scales to red-shouldered hawk occupancy and assessed support for these models in an information-theoretic framework. Overall, a small proportion of nonforest (grass, clear-cut area, forest <5 yr old), and a large proportion of mature deciduous forest (>40 yr old), had the strongest association with red-shouldered hawk occupancy (proportion of sites occupied) at both spatial scales. The landscape conditions we examined appeared to contain a habitat transition important to red-shouldered hawks. We found, in predominately forest landscapes, the amount of open habitat was most strongly associated with red-shouldered hawk occupancy, but in landscapes that included slightly less mature forest and more extensive open habitats, the extent of mature deciduous forest was most strongly associated with red-shouldered hawk occupancy. Our results suggested that relatively small (<5 ha) patches of open habitat (clear-cuts) in otherwise forested landscapes did not appear to influence red-shouldered hawk occupancy. Whereas, in an otherwise similar landscape, with smaller amounts of mature deciduous forest and larger (>15 ha) patches of open habitat, red-shouldered hawk occupancy decreased, suggesting a threshold in landscape composition, based on both the amount of mature forest and open area, is important in managing forest landscapes for red-shouldered hawks. Our results show that during the nesting season, red-shouldered hawks in central Minnesota occupy at similar rates landscapes with different habitat compositions resulting from different management strategies and that management strategies that create small openings may not negatively affect red-shouldered hawk occupancy.  相似文献   

14.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   

15.
16.
Importance of patch scale vs landscape scale on selected forest birds   总被引:8,自引:0,他引:8  
The management and protection of natural areas have primarily occurred in isolation from surrounding land management. The structure of surrounding land cover, however, may be important to the abundance and reproductive success of birds within a habitat patch. We investigated the relative importance of forest patch area, within patch habitat and surrounding landscape forest cover on the abundance of three Neotropical migrant bird species thought to be area-sensitive (ovenbird [ Seiurus aurocapillus ], wood thrush [ Hylocichla mustelina ] and red-eyed vireo [ Vireo olivaceus ]), and on pairing success of the ovenbird. We selected 31 isolated forest patches of differing sizes, and three 80-ha plots in continuous forest each centered within non-overlapping 200-ha landscapes, such that patch area and landscape forest cover were uncorrelated among landscapes. Each study plot was surveyed to estimate abundances of territorial males and ovenbird pairing success. Landscape forest cover ( p <0.05) explained the most variation in ovenbird abundance, while percent deciduous forest cover within patches ( p <0.05) and patch size ( p <0.05) explained the most variation in red-eyed vireo and wood thrush abundance, respectively. Patch size was a significant ( p <0.05) predictor of abundance for all three study species; however, density for all species decreased significantly ( p <0.05) with patch size. Ovenbird pairing success was higher in continuous forest plots than in forest patches ( p =0.018). This study's findings suggest that the relative importance of within patch characteristics, patch size and landscape forest cover varies for different bird species, and that conservation efforts would benefit from the inclusion of all three factors.  相似文献   

17.
Habitat loss and fragmentation are major drivers of biodiversity loss. A key question, particularly relevant to carnivore conservation, is to which extent species are able to survive in human-modified landscapes. Currently, conservationists are concerned about the impact habitat fragmentation may have on the long-term persistence of the forest-dwelling guiña (Leopardus guigna), given the increasingly modified landscapes in which they live. Here we evaluate the effect habitat cover, fragmentation and anthropogenic pressure have on the occupancy probability for guiñas in privately-owned forest fragments. We collected camera-trap data from 100 temperate rainforest sites in Chile and used single-season occupancy modeling to evaluate the influence of 13 parameters of landscape structure/anthropogenic pressure and four parameters of detection probability on the ocurrence of guiñas. The camera-trap survey data comprised 4168 camera-trap days and 112 independent records of guiñas. Surprisingly, fragmented (defined as having a high perimeter-to-area ratio) and moderately sized habitat patches best predicted site occupancy. Occupancy also increased where habitat patches were closer to continuous forest and nearer to buildings. Our results imply that guiñas can benefit from a high degree of edge type habitats in fragmented landscapes, capable of adapting to habitat fragmentation in the proximity to large continuous forest patches. This suggests that guiñas have a broader niche than previously believed. Additionally, the guiña is tolerant of human infrastructure. Further research is required to identify potential ecological traps, long-term source-sink dynamics, and the habitat loss/fragmentation threshold beyond which guiña populations are no longer viable.  相似文献   

18.
Changes in site occupancy across habitat patches have often been attributed to landscape features in fragmented systems, particularly when considering metapopulations. However, failure to include habitat quality of individual patches can mask the relative importance of local scale features in determining distributional changes. We employed dynamic occupancy modeling to compare the strength of local habitat variables and metrics of landscape patterns as drivers of metapopulation dynamics for a vulnerable, high‐elevation species in a naturally fragmented landscape. Repeat surveys of Bicknell's thrush Catharus bicknelli presence/non‐detection were conducted at 88 sites across Vermont, USA in 2006 and 2007. We used an organism‐based approach, such that at each site we measured important local‐scale habitat characteristics and quantified landscape‐scale features using a predictive habitat model for this species. We performed a principal component analysis on both the local and landscape features to reduce dimensionality. We estimated site occupancy, colonization, and extinction probabilities while accounting for imperfect detection. Univariate, additive, and interaction models of local habitat and landscape context were ranked using AICc scores. Both local and landscape scales were important in determining changes in occupancy patterns. An interaction between scales was detected for occupancy dynamics indicating that the relationship of the parameters to local‐scale habitat conditions can change depending on the landscape context and vice versa. An increase in both landscape‐ and local‐scale habitat quality increased occupancy and colonization probability while decreasing extinction risk. Colonization and extinction were both more strongly influenced by local habitat quality relative to landscape patterns. We also identified clear, qualitative thresholds for landscape‐scale features. Conservation of large habitat patches in high‐cover landscapes will help ensure persistence of Bicknell's thrushes, but only if local scale habitat quality is maintained. Our results highlight the importance of incorporating information beyond landscape characteristics when investigating patch occupancy patterns in metapopulations.  相似文献   

19.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

20.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号