首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》2014,538(2):342-347
Chemotherapy plays a crucial role in hepatocellular carcinoma (HCC) treatment especially for patients with advanced HCC. Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of HCC. However, acquisition of cisplatin resistance is common in patients with HCC, and the underlying mechanism of such resistance is not fully understood. In the study, we focused on identifying the role of miRNAs in chemotherapy resistance after cisplatin-based combination chemotherapy. We assayed the expression level of miR-182 after cisplatin-based chemotherapy in patients with advanced HCC, and defined the biological functions by real-time PCR analysis and CCK-8 assay. We found that miR-182 levels were significantly increased in HCC patients treated with cisplatin-based chemotherapy. miR-182 levels were also higher in cisplatin-resistant HepG2 (HepG2-R) cells than in HepG2 cells. Upregulated miR-182 significantly increased the cell viability, whereas miR-182 knockdown reduced the cell viability during cisplatin treatment. miR-182 inhibition also partially overcame cisplatin resistance in HepG2-R cell. Furthermore, we found that upregulated miR-182 inhibited the expression of tumor suppressor gene TP53INP1 (tumor protein 53-induced nuclear protein1) in vitro. In vivo, miR-182 and TP53INP1 expression was negatively correlated. We finally demonstrated that miR-182 increased cisplatin resistance of HCC cell, partly by targeting TP53INP1. These data suggest that miR-182/TP53INP1 signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

2.
Cepharanthine (CEP), a natural compound extracted from Stephania cepharantha Hayata, has been found to have the potential to treat a variety of tumors in recent years. This study aims to evaluate the anti-hepatocellular carcinoma (HCC) effect of CEP and determine its in-depth mechanism. In this study, Hep3B and HCCLM3 cells were selected to evaluate the antitumor effects of CEP in vitro, whereas tumor xenograft in nude mice was performed to make in vivo anti-tumor assessment. RNA-sequence (RNA-seq) was used to identify possible molecular targets and pathways. Further, gas chromatography mass spectrometry (GC-MS) was performed to assess the differential metabolites involved in mediating the effect of CEP on the HCC cell line. Our results showed that CEP treatment resulted in the dose-dependent inhibition of cell viability, migration, and proliferation and could also induce apoptosis in HCC cells. RNA-seq following CEP treatment identified 168 differentially expressed genes (DEGs), which were highly enriched in metabolism-associated pathways. In addition, CEP down-regulated many metabolites through the amino acid metabolism pathway. In vivo experiment showed that CEP significantly suppressed tumor growth. Our results indicate that CEP has significant antitumor effects and has the potential to be a candidate drug for HCC treatment.  相似文献   

3.
【目的】探究生物膜形成中间状态下副溶血弧菌的差异基因表达情况,为今后研究生物膜形成调控机制提供基因信息。【方法】以非生物膜形成条件下为参照,采用Illumina HiSeq测序平台进行转录组测序(RNA sequencing,RNA-seq)研究,分析生物膜形成中间状态下副溶血弧菌的基因表达情况,并采用实时定量PCR (quantitative real-time PCR,qPCR)进行验证。【结果】本研究共获得979个差异显著性表达基因(differentially expressed gene,DEG),其中下调基因379个,上调基因600个。基因本体(gene ontology,GO)分类分析结果显示,共有363个DEGs注释到分子功能、细胞组分和生物学过程3个一级分类和30个二级分类;京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)代谢途径分析结果显示,共有706个DEGs归到37个代谢通路中(Q value<0.05),差异表达基因主要集中在细胞代谢和转运通路上;蛋白相邻类的聚簇(clusters of orthologous groups,COG)分类结果显示,有888个DEGs可归为20个类别,涉及DEGs最多的为氨基酸转运与代谢、一般功能预测基因、能量产生与转换以及未知功能基因。qPCR验证挑选的DEGs变化趋势均与RNA-seq的结果一致。此外,从转录组数据中共筛选出10个c-di-GMP代谢相关基因、1个侧生鞭毛蛋白基因(lafA)、13个极生鞭毛合成相关基因、6个荚膜多糖合成相关基因、6个胞外多糖合成相关基因、5个IV型菌毛合成相关基因、膜融合蛋白(membrane fusion protein,Mfp)基因(cpsQ-mfpABC)、14个III型分泌系统1(T3SS1)相关基因、14个Vp-PAI基因(1个tdh2和13个T3SS2基因)、3个VI型分泌系统1(T6SS1)相关基因、6个T6SS2基因、45个推定调控子基因和15个推定的外膜蛋白基因。【结论】生物膜形成引起副溶血弧菌基因表达谱发生明显变化,差异表达基因中包含生物膜形成相关基因、关键毒力基因和许多推定调控子基因等,这为后续研究生物膜形成调控机制提供重要信息。  相似文献   

4.
5.
《Genomics》2020,112(1):694-702
BackgroundHepatocellular carcinoma (HCC) is a primary cause of cancer mortality. PAK1 plays key roles in many types of cancers. However, the role of PAK1 in HCC is not clear.MethodsqRT-PCR and Western blotting were used to determine expressions of PAK1, Snail and epithelial mesenchymal transition (EMT)-related proteins. Luciferase reporter assay was used to measure the interaction between PAK1 and Snail. Wound healing, transwell, colony formation assays and flow cytometry were used to assess cell migration, invasion, proliferation and apoptosis. Mouse tumor xenograft model was used to determine the effect of PAK1 on tumor growth in vivo.ResultsPAK1 and Snail were up-regulated in HCC cells. PAK1 knockdown suppressed cell proliferation, migration and invasion, and increased apoptosis of HCC cells. PAK1 knockdown also inhibited tumor growth in vivo. Mechanistically, PAK1 promoted EMT by targeting Snail. Knockdown of PAK1 could up-regulate pro-apoptotic proteins but down-regulate proliferation-related proteins via suppressing β-catenin signaling pathway.ConclusionPAK1 promotes EMT process by increasing Snail, and facilitates progression of HCC by activating β-catenin pathway.  相似文献   

6.
BackgroundLung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored.PurposeIn the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death.MethodsThe regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis.ResultsPPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells.ConclusionThese results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.  相似文献   

7.
Chemotherapy resistance is still a key hurdle in current hepatocellular carcinoma (HCC) treatment. Therefore, clarifying the molecular mechanisms contributing to this acquired resistance is urgent for the effective treatment of liver cancer. In this research, we observed that lncRNA FAM225A expression is dramatically up-regulated not only in HCC tissues and cell lines but also in sorafenib-resistant HepG2/SOR cells. Moreover, FAM225A knockdown significantly weakened HepG2/SOR cells resistance to sorafenib treatment by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Similar results were obtained from the tumor xenograft model in mice. Further mechanistic researches revealed that the direct interaction between FAM225A and miR-130a-5p, while miR-130a-5p negatively modulated Cyclin G1 (CCNG1) expression by targeting 3′UTR of CCNG1. MiR-130a-5p inhibition or CCNG1 overexpression could partially offset FAM225A knockdown-induced increased viability of HepG2/SOR cells in response to sorafenib challenge. Collectively, our findings provide evidence that FAM225A/miR-130a-5p/CCNG1 interaction network regulates the resistance of HCC cells to sorafenib treatment and could supply a possible strategy for restoring sorafenib sensitivity in HCC therapy.  相似文献   

8.
9.
10.
Hepatocellular carcinoma (HCC) is a common primary liver malignancy lacking effective molecularly-targeted therapies. HBO1 (lysine acetyltransferase 7/KAT7) is a member of MYST histone acetyltransferase family. Its expression and potential function in HCC are studied. We show that HBO1 mRNA and protein expression is elevated in human HCC tissues and HCC cells. HBO1 expression is however low in cancer-surrounding normal liver tissues and hepatocytes. In HepG2 and primary human HCC cells, shRNA-induced HBO1 silencing or CRISPR/Cas9-induced HBO1 knockout potently inhibited cell viability, proliferation, migration, and invasion, while provoking mitochondrial depolarization and apoptosis induction. Conversely, ectopic overexpression of HBO1 by a lentiviral construct augmented HCC cell proliferation, migration and invasion. In vivo, xenografts-bearing HBO1-KO HCC cells grew significantly slower than xenografts with control HCC cells in severe combined immunodeficient mice. These results suggest HBO1 overexpression is important for HCC cell progression.Subject terms: Targeted therapies, Oncogenes  相似文献   

11.
目的:肝癌分子靶向治疗是目前研究的热点,肝癌相关基因mcl-1在肝癌增殖及凋亡中的作用尚不明确,本研究拟探讨mcl-1特异性siRNA对体外培养肝癌细胞HepG2增殖及凋亡的影响。方法:设计、合成有效的mcl-1特异性siRNA序列,体外转染HepG2细胞;通过绘制细胞生长曲线和MTT实验检测mcl-1特异性siRNA对HepG2细胞增殖的影响;通过AnnexinV/PI双标记流式细胞仪检测mcl-1特异性siRNA对HepG2细胞凋亡率的影响。结果:通过绘制细胞生长曲线发现,mcl-1特异性siRNA能够抑制HepG2细胞的增殖(P〈0.05),MTT实验提示转染mcl-1特异性siRNA24h、48h、72h后,HepG2细胞存活率均显著下降(P〈O.05);流式细胞仪检测分析发现,转染mcl.1特异性siRNA后AnnexinV+/PI-细胞百分率显著增高(P〈0.01),提示mcl-1具有促进HepG2细胞凋亡的作用。结论:Mcl-1蛋白具有促进肝癌细胞增殖,抑制肝癌细胞凋亡的作用,这种分子特性符合肿瘤靶向治疗的要求,Mcl-1可能成为肝癌靶向治疗的潜在靶点。  相似文献   

12.
13.
目的:探讨核糖蛋白2(ribophorin II,RPN2)在肝细胞肝癌(HCC)组织中的表达和对HCC患者生存的影响,同时分析RPN2对肝癌HepG2细胞生长和克隆形成的作用。方法:应用免疫组化方法和HCC公共芯片数据,从蛋白和m RNA水平检测HCC组织中RPN2的表达,同时分析RPN2与HCC患者临床参数的关系及预后相关性;进一步利用MTS法和克隆形成实验在肝癌HepG2细胞中检测RPN2对细胞生长的作用。结果:98例肝癌组织中,RPN2阳性表达率88.78%,对应癌旁肝组织中,RPN2阳性表达率74.49%;癌组织中RPN2染色评分为5.80±3.15,癌旁肝组织RPN2染色评分为2.13±1.59,肝癌组织中RPN2表达显著上调(P0.001)。3个肝癌公共芯片数据(共522例肝癌)中RPN2的m RNA表达水平同样显著升高(均P0.001)。98例肝癌患者RPN2表达水平与肿瘤直径(P=0.004)、门脉侵袭(P=0.012)和TNM分期(P=0.009)相关;RPN2高表达的患者总体生存期(OS)和无复发生存期(RFS)较RPN2低表达的患者短(OS:P=0.027;RFS:P=0.036)。肝癌HepG2细胞转染RPN2小干扰RNA后,细胞生长能力显著受抑制。结论:RPN2在肝癌中表达显著升高,RPN2的表达与肝癌的恶性进展有关,RPN2显著促进肝癌细胞生长。  相似文献   

14.
15.
BackgroundAngiosarcoma of the breast is a high-grade malignant soft tissue tumor, it can be divided into primary and radiation-associated angiosarcoma(secondary). However, the differences between primary and secondary angiosarcomas in terms of pathogenesis, clinical behavior, early diagnosis biomarkers, genetic abnormalities, and therapeutic targets remain to be fully elucidated. At the same time, due to its rarity, most of current information relating to angiosarcoma is provided by case reports. Therefore, exploring the mechanisms of primary and secondary breast angiosarcoma have important value for the discovery of new biomarkers and research into potential therapeutic targets.MethodsThe differentially expressed genes (DEGs) between 36 cases of primary angiosarcoma and 54 cases of secondary angiosarcoma were screened. Then, the DEGs were used to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, a protein-protein interaction (PPI) network was constructed using the STRING database.ResultsA total of 18 DEGs were identified, of which 13 were upregulated and 5 were downregulated in secondary breast angiosarcoma. The GO enrichment analysis showed that the DEGs were most enriched in metabolism, energy pathways, and protein metabolism in biological processes. The enriched signaling pathways of DEGs were the transforming growth factor-β (TGF-β), Wnt, Hippo and PI3K-Akt signaling pathways. Then, the PPI network was conducted and hub genes were identified and they were involved in thyroid hormone, Hippo and other signaling pathways.ConclusionThis study lay the foundation for the discovery of effective and reliable molecular biomarkers and essential therapeutic targets for these malignancies.  相似文献   

16.
BackgroundEvidence showed that inorganic arsenic (iAs) can trigger malignant transformation in cells with complex mechanisms. Thus, we aimed to investigate the possible molecules, pathways and therapeutic drugs for iAs-induced bladder cancer (BC) by using bioinformatics approaches.MethodsMicroarray-based data were analyzed to screen the differentially expressed genes (DEGs) between iAs-related BC cells and controls. Then, the roles of DEGs were annotated and the hub genes were screened out by protein-protein interaction network. The key genes were further selected from the hub genes through an assessment of the prognostic values. Afterward, potential drugs were predicted by using CMAP analysis.ResultsAnalysis of a dataset (GSE90023) generated 21 upregulated and 47 downregulated DEGs, which were enriched in various signaling pathways. Among the DEGs, four hub genes including WNT7B, SFRP1, DNAJB2, and ATF3, were identified as the key genes because they might predict poor prognosis in BC patients. Lastly, Cantharidin was predicted to be a potential drug reversing iAs-induced malignant transformation in urinary epithelium cells.ConclusionThe present study found several hub genes involved in iAs-induced malignant transformation in urinary epithelium cells, and predicted several small agents for iAs toxicity prevention or therapy.  相似文献   

17.
《Genomics》2019,111(6):1862-1872
BackgroundHepatocellular carcinoma (HCC) is one of the main causes of cancer-related death. This study aims to explore the role and underlying mechanism of H19 in HCC.MethodsqRT-PCR detected miR-15b-5p and H19 expression, as well as the mRNA level of EMT-associated genes. Western blotting detected protein level of EMT-associated genes. Immunohistochemistry (IHC) examined CDC42 in HCC tissues. Dual luciferase reporter assay verified the regulatory mechanism among H19, miR-15b and CDC42. Colony formation, wound healing assay, transwell, flow cytometry measured proliferation, migration, invasion and apoptosis, respectively.ResultsH19 and CDC42 were up-regulated while miR-15b was down-regulated in HCC cells and tissues. miR-15b interacted with H19 and CDC42 3′-UTR. H19 knockdown inhibited proliferation, migration and invasion, and increased apoptosis, which was rescued by miR-15b inhibitor. H19 knockdown suppressed CDC42/PAK1 pathway and EMT progress.ConclusionH19 knockdown inhibited proliferation, migration and invasion, and promoted apoptosis of HCC cells via targeting miR-15b/CDC42/PAK1 axis.  相似文献   

18.
【目的】微孢子虫是一种营专性细胞内寄生的微生物,它可以感染几乎所有动物种类,包括人类和重要的经济动物。本研究对家蚕微粒子虫分泌蛋白己糖激酶(Nosema bombycis hexokinase, NbHK)在家蚕胚胎细胞中表达特征、亚细胞定位、调控作用和宿主互作蛋白质进行了系统分析,为阐明该蛋白在侵染中的作用与机理提供参考。【方法】利用原核表达蛋白免疫小鼠,制备NbHK的多克隆抗体,并利用Western blotting和间接免疫荧光法分析家蚕微粒子虫在感染的家蚕胚胎细胞(Bombyx mori embryo, BmE)中的表达和定位;通过过表达和RNA干扰实验,分析NbHK对病原增殖的作用;利用RNA-seq分析NbHK调控的家蚕基因表达和通路;利用生物素-链霉亲和素系统和质谱技术,从NbHK::APEX2转基因细胞中分离鉴定NbHK的互作蛋白。【结果】在感染家蚕微粒子虫的BmE中,NbHK持续上调表达,主要被定位于宿主细胞核内。过表达NbHK显著促进了病原增殖,而敲低NbHK则明显抑制了病原增殖,说明在NbHK感染过程中发挥关键作用。利用RNA-seq分析鉴定了94个差异表达基因(differentially expressed genes, DEGs),其中58个基因上调,36个基因下调。DEGs的富集分析显示,细胞寿命和内质网蛋白加工通路受到显著激活,而线粒体自噬途径受到明显抑制。互作蛋白鉴定分析发现,NbHK可能与宿主细胞核内的核蛋白易位启动子区(nucleoprotein translocated promoter region, NTPR)等蛋白间存在相互作用。【结论】NbHK主要被定位至家蚕细胞核中,调控家蚕细胞寿命等多个重要通路的基因表达,以利于病原增殖。本研究为深入解析NbHK在感染过程中的功能及其调控机理提供了新的参考。  相似文献   

19.
BackgroundChemoresistance remains the main obstacle in hepatocellular carcinoma (HCC) therapy. Despite significant advances in HCC therapy, HCC still has a poor prognosis. Thus, there is an urgent need to identify a treatment target to reverse HCC chemotherapy resistance. Platycodon grandiflorus (PG) is a perennial herb that has been used as food and traditional Chinese medicine for thousands of years in Northeast Asia. Platycodin D (PD), a main active triterpenoid saponin found in the root of PG, has been reported to possess anticancer properties in several cancer cell lines, including HCC; however, the reversal effect of this molecule on HCC chemoresistance remains largely unknown.PurposeThis study aimed to investigate the role and the mechanism of PD-mediated reversal of the histone deacetylase inhibitor (HDACi) resistance in HCC cells.MethodsHuman HCC cells (HA22T) and HDACi-resistant (HDACi-R) cells were used. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Combination index was used to calculate the synergism potential. Expression of ERK1/2 (total/phospho), cofilin-1 (total/phospho) and apoptosis-related protein was determined using western blotting. Mitochondrial membrane potential was assessed using the JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide) probe. Apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Mitochondrial reactive oxygen species generation was measured using the MitoSOX Red fluorescent probe.ResultsWe found that PD treatment inhibited cell viability both in HA22T HCC and HDACi-R cells. Inhibition of ERK1/2 by PD98059 could reverse drug resistance in HDACi-R cells treated with PD98059 and PD. Nevertheless, pre-treatment with U46619, an ERK1/2 activator, rescued PD-induced apoptosis by decreasing levels of apoptosis-related proteins in HCC cells. The combined treatment of PD with apicidin a powerful HDACi, dramatically enhanced the apoptotic effect in HDACi-R cells.ConclusionFor the first time, we showed that PD reversed HDACi resistance in HCC by repressing ERK1/2-mediated cofilin-1 phosphorylation. Thus, PD can potentially be a treatment target to reverse HCC chemotherapy resistance in future therapeutic trials.  相似文献   

20.
The long noncoding RNA growth-arrest specific 5 (GAS5) is a suppressor of many cancers. However, the role and mechanism of action of GAS5 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, the expression of hepatitis B virus x gene (HBx) mRNA and GAS5 was assessed by qRT–PCR, and western blot analysis was performed to determine the protein expression levels. In addition, the cell viability and invasion of cells were confirmed using  MTT assay and Transwell assay, respectively. The DNA methylation level of GAS5 was measured by methylation-specific PCR. Moreover, RIP assay and RNA pull down assay were carried out to examine the combination of Y-box-binding protein 1 (YBX1) and GAS5. First, our data proved that HBx is increased, while GAS5 is decreased in HCC cell lines. Subsequently, we found that HBx facilitates HCC cell viability and invasion by inhibiting GAS5 expression. Then, we further clarified that HBx induces the DNA methylation of GAS5 by promoting methyltransferase expression, thereby suppressing GAS5 expression. Furthermore, GAS5 binds YBX1 and promotes YBX1 and p21 expression. Finally, the functional analysis revealed that the upregulation of GAS5 could attenuate cell viability and invasion by boosting p21 expression via binding YBX1. Overall, our results demonstrated that HBx promotes HCC progression by inducing GAS5 methylation to reduce its expression. The upregulation of GAS5 suppressed HBV-related HCC by activating YBX1/p21 signaling. Our data provide novel evidence supporting the potential of GAS5 as a treatment target in HBV-related HCC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00645-z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号