首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Few widely effective resistance sources to sunflower rust, incited by Puccinia helianthi Schwein., have been identified in confection sunflower (Helianthus annuus L.). The USDA inbred line HA-R6 is one of the few confection sunflower lines resistant to rust. A previous allelism test indicated that rust resistance genes in HA-R6 and RHA 397, an oilseed-type restorer line, are either allelic or closely linked; however, neither have been characterized nor molecularly mapped. The objectives of this study are (1) to locate the rust resistance genes in HA-R6 and RHA 397 on a molecular map, (2) to develop closely linked molecular markers for rust resistance diagnostics, and (3) to determine the resistance spectrum of two lines when compared with other rust-resistant lines. Two populations of 140 F2:3 families each from the crosses of HA 89, as susceptible parent, with HA-R6 and RHA 397 were inoculated with race 336 of P. helianthi in the greenhouse. The resistance genes (R-genes) in HA-R6 and RHA 397 were molecularly mapped to the lower end of linkage group 13, which encompasses a large R-gene cluster, and were designated as R 13a and R 13b, respectively. In the initial maps, SSR (simple sequence repeat) and InDel (insertion and deletion) markers revealed 2.8 and 8.2 cM flanking regions for R 13a and R 13b, respectively, linked with a common marker set of four co-segregating markers, ORS191, ORS316, ORS581, and ZVG61, in the distal side and one marker ORS464 in the proximal side. To identify new markers closer to the genes, sunflower RGC (resistance gene candidate) markers linked to the downy mildew R-gene Pl 8 and located at the same region as R 13a and R 13b were selected to screen the two F2 populations. The RGC markers RGC15/16 and a newly developed marker SUN14 designed from a BAC contig anchored by RGC251 further narrowed down the region flanking R 13a and R 13b to 1.1 and 0.1 cM, respectively. Both R 13a and R 13b are highly effective against all rust races tested so far. Our newly developed molecular markers will facilitate breeding efforts to pyramid the R 13 genes with other rust R-genes and accelerate the development of rust-resistant sunflower hybrids in both confection and oilseed sunflowers.  相似文献   

2.
Sunflower rust, caused by the fungus Puccinia helianthi Schwein., was not a serious problem for many decades because of successful deployment of effective resistance genes in commercial sunflower (Helianthus annuus L.) hybrids in North America. In the 1980s and early 1990s, however, a shift in virulence of the rust race population in North America rendered most of the commercial hybrids susceptible to new virulent races. A germplasm line, HA-R2, carrying the rust resistance gene R 5 was released as a multi-race rust-resistant line in 1985 but has not been widely used in commercial hybrid production. R 5 remains effective against the prevalent rust races of sunflower in North America. This gene was previously reported to be associated with two simple sequence repeat (SSR) markers, ORS316 and ORS630, which were mapped to linkage group (LG) 13 of sunflower. However, out of the 63 markers of LG13 screened in the present study, only 18, including ORS316 and ORS630, were polymorphic. These markers, which covered all of LG 13, were assayed in 94 individual F2 progenies derived from the cross of HA 89 with HA-R2. All failed to detect any locus in LG13 associated with the gene R 5 . Subsequently, a bulked segregant analysis was employed with an additional 510 SSR markers selected from the remaining 16 LGs of the sunflower genome. This analysis demonstrated that the LG2 markers showed association with rust resistance. Genotyping of the 94 F2 individuals with 23 polymorphic SSR markers from LG2 confirmed the R 5 location on LG2, flanked by two SSR markers, ORS1197-2 and ORS653a, at 3.3 and 1.8?cM of genetic distance, respectively. The markers for R 5 developed in this study will provide a useful tool for speeding up deployment of the R 5 gene in commercial sunflower hybrid production.  相似文献   

3.
Sunflower, the fifth largest oilseed crop in the world, plays an important role in human diets. Recently, sunflower production in North America has suffered serious yield losses from newly evolved races of sunflower rust (Puccinia helianthi Schwein.). The rust resistance gene, designated R 14 , in a germplasm line PH 3 originated from a wild Helianthus annuus L. population resistant to 11 rust races. PH 3 has seedling with an extraordinary purple hypocotyl color. The objectives of this study were to map both the R 14 rust resistance gene and the purple hypocotyl gene-designated PHC in PH 3, and to identify molecular markers for marker-assisted breeding for sunflower rust resistance. A set of 517 mapped SSR/InDel and four SNP markers was used to detect polymorphisms between the parents. Fourteen markers covering a genetic distance of 17.0 cM on linkage group (LG) 11 were linked to R 14 . R 14 was mapped to the middle of the LG, with a dominant SNP marker NSA_000064 as the closest marker at a distance of 0.7 cM, and another codominant marker ORS542 linked at 3.5 cM proximally. One dominant marker ZVG53 was linked on the distal side at 6.9 cM. The PHC gene was also linked to R 14 with a distance of 6.2 cM. Chi-squared analysis of the segregation ratios of R 14 , PHC, and ten linked markers indicated a deviation from an expected 1:2:1 or 3:1 ratio. The closely linked molecular or morphological markers could facilitate sunflower rust-resistant breeding and accelerate the development of rust-resistant hybrids.  相似文献   

4.
The inheritance of a previously identified dominant Rf gene in the confection sunflower line RHA 280 has been determined and designated as Rf 3 . This study reports the mapping of the Rf 3 locus using an F2 population of 227 individuals derived from CMS HA 89-3149 × RHA 280. Bulked segregant analysis with 624 pairs of simple sequence repeat (SSR) primers and sequence tagged site (STS) primers identified two polymorphic SSR markers each of linkage groups (LGs) 7 and 11 from a previous map. Results on 90 F2 individuals with 42 polymorphic markers of LGs 7 and 11 indicated that the Rf 3 gene was linked with eight markers on LG 7, including five SSR markers (ORS328, ORS331, ORS928, ORS966, and ORS1092) and three expressed sequence tag (EST)-SSR markers (HT619-1, HT619-2, and HT1013). Further analysis of the total F2 population of 227 individuals identified a co-dominant marker, ORS328, linked to Rf 3 at a genetic distance of 0.7 cM on one side, and a female-dominant marker HT1013 at 12.6 cM proximal to Rf 3 on the other side; a genetic distance of 47.1 cM for LG 7 was covered. This is the first report of an Rf gene from the confection sunflower. The closely linked marker to Rf 3 will facilitate marker-assisted selection, and provide a basis for cloning of this gene.  相似文献   

5.
In this study, a population of 97 F1 seedlings from a cross between the interspecific hybrid (European × Chinese species) pear ‘Bayuehong’ (BYH) and the Chinese pear ‘Dangshansuli’ (DS) was used for establishing linkage maps and for quantitative trait loci (QTL) discovery. Using amplified length polymorphism (AFLP), simple sequence repeat (SSR), and sequence-related amplified polymorphism (SRAP) markers, along with the S locus for self-incompatibility, two parental linkage maps were constructed. The map of BYH consisted of 214 markers (143 AFLPs, 64 SRAPs, 6 SSRs, and S) mapped on all 17 linkage groups of the pear genome with a total length of 1,352.7 cM. The map of DS was comprised of 122 markers (83 AFLPs, 37 SRAPs, 1 SSR, and S) distributed along all 17 linkage groups and covering 1,044.3 cM. Based on phenotypic data from two successive years (2007 and 2008) for six fruit traits, including fruit weight (in grams), fruit diameter (in centimeters), fruit length (in centimeters), soluble solids content, fruit shape index, and maturity date, 19 QTLs were detected. These QTLs were mapped on LG 01, LG 02, LG 05, LG 07, LG 08, LG 10 of the BYH map and LG 02, LG 06, LG 15 of the DS map and accounting for 7.1 to 22.0 % of the observed phenotypic variance. Four QTLs, Pfi-8-1 for fruit shape index, Pfm-8-1 for fruit maturity date, Pfw-7-1 and Pfw-8-1 for fruit weight (in grams), with LOD scores ≥3.5, were deemed as major genes. QTLs Pfi-8-1, Pfm-8-1, and Pfw-8-1 were co-localized on LG 08 of the BYH map, along with Pfl-8-1 for fruit length. It was observed that on LG 07 of the BYH map, QTLs for fruit length, fruit shape index, and fruit weight were clustered. When QTL locations from both years were compared, Pfl-7-1 and Pfl-7-2 for fruit length, Pfi-2-1 and Pfi-2-2 for fruit shape index, and Pfm-8-1 and Pfm-8-2 for fruit maturity date were stably mapped onto the same linkage groups, respectively. Moreover, Pfm-8-1 and Pfm-8-2 were also located within the same region of LG 08 of the BYH map.  相似文献   

6.
Carrot (Daucus carota L.) is a cool-season vegetable normally classified as a biennial species, requiring vernalization to induce flowering. Nevertheless, some cultivars adapted to warmer climates require less vernalization and can be classified as annual. Most modern carrot cultivars are hybrids which rely upon cytoplasmic male-sterility for commercial production. One major gene controlling floral initiation and several genes restoring male fertility have been reported but none have been mapped. The objective of the present work was to develop the first linkage map of carrot locating the genomic regions that control vernalization response and fertility restoration. Using an F2 progeny, derived from the intercross between the annual cultivar ‘Criolla INTA’ and a petaloid male sterile biennial carrot evaluated over 2 years, both early flowering habit, which we name Vrn1, and restoration of petaloid cytoplasmic male sterility, which we name Rf1, were found to be dominant traits conditioned by single genes. On a map of 355 markers covering all 9 chromosomes with a total map length of 669 cM and an average marker-to-marker distance of 1.88 cM, Vrn1 mapped to chromosome 2 with flanking markers at 0.70 and 0.46 cM, and Rf1 mapped to chromosome 9 with flanking markers at 4.38 and 1.12 cM. These are the first two reproductive traits mapped in the carrot genome, and their map location and flanking markers provide valuable tools for studying traits important for carrot domestication and reproductive biology, as well as facilitating carrot breeding.  相似文献   

7.
Increasing the stearic acid content to improve sunflower (Helianthus annuus L.) oil quality is a desirable breeding objective for food-processing applications. CAS-14 is a sunflower mutant line with a high stearic acid content in its seed oil (>35% vs. <6% in currently grown sunflower hybrids), which is controlled by the Es3 gene. However, the expression of the high stearic acid character in CAS-14 is strongly influenced by temperature during seed maturation and it is not uniform along the seed. The objectives of this study were (1) to identify PCR-based molecular markers linked to the Es3 gene from CAS-14, (2) to map this gene on the sunflower genetic map, and (3) to characterize the interaction between CAS-14 and CAS-3, a sunflower high stearic acid (about 26%) mutant line with the Es1 and Es2 genes determining this trait. Two F2 mapping populations were developed from crosses between CAS-14 and P21, a nuclear male sterile line with the Ms11 gene controlling this character, and between CAS-14 and CAS-3. One hundred and thirty-three individuals from P21×CAS-14, and 164 individuals from CAS-3×CAS-14 were phenotyped in F2 and F3 seed generations for fatty acid composition using gas–liquid chromatography, and they were then genotyped with microsatellite [simple sequence repeat (SSR)] and insertion–deletion (INDEL) markers. Bulk segregant analysis in the P21×CAS-14 population identified two markers on LG 8 putatively linked to Es3. A large linkage group was identified using additional markers mapping to LG 8. Es3 mapped to the distal half of LG 8 and was flanked by the SSR markers ORS243 and ORS1161 at genetic distances of 0.5, and 3.9 cM, respectively. The Ms11 gene was also mapped to LG 8 and genetic distance between this gene and Es3 was found to be 7.4 cM. In the CAS-3×CAS-14 population, two QTLs were identified on LG 1 and LG 8, which underlie the Es1 gene from CAS-3 and the Es3 gene from CAS-14, respectively. A significant epistatic interaction between these two QTLs was found. Results from this study provided a basis for determining CAS-14 efficient breeding strategies.  相似文献   

8.
Reproductive phenological traits of great agronomical interest in apricot species, including flowering date, ripening date and fruit development period, were studied during 3 years in two F1 progenies derived from the crosses ‘Bergeron’ × ‘Currot’ (B × C) and ‘Goldrich’ × ‘Currot’ (G × C). Results showed great variability and segregation in each population, confirming the polygenic nature and quantitative inheritance of all the studied traits. Genetic linkage maps were constructed combining SSR and SNP markers, using 87 markers in the ‘B × C’ population and 89 markers in ‘G × C’. The genetic linkage maps in both progenies show the eight linkage groups (LGs) of apricot, covering a distance of 394.9 cM in ‘Bergeron’ and of 414.3 cM in ‘Currot’. The ‘Goldrich’ and ‘Currot’ maps were of 353.5 and 422.3 cM, respectively. The average distance obtained between markers was thus 7.59 cM in ‘Bergeron’ and 7.53 cM in ‘Currot’, whereas the ‘Goldrich’ and ‘Currot’ averages were 5.6 and 7.5 cM, respectively. According to the polygenic nature of the studied phenology traits, QTLs linked to flowering date, ripening date and the fruit development period were identified during the 3 years of the study in all LGs except for LG 8. Among the QTLs identified, major QTLs for flowering and ripening date and the fruit development period were identified in LG 4, especially important in the ‘G × C’ population.  相似文献   

9.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

10.
Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines ‘835’ (susceptible) and ‘B2’ (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.  相似文献   

11.
An F2 population was developed from a cross between a mur-cytoplasmic male sterile broccoli line and a restorer Chinese kale line. Phenotypic analysis of F2 plants indicated that the pollen fertility is controlled by two genes and segregated in a duplicate gene interaction mode with a ratio of 15:1. A total of 236 single nucleotide polymorphism (SNP) markers were developed utilizing 1,448 primers designed for production of expressed sequence tag (EST)-SNP markers of Raphanus sativus and analyzed by the dot-blot technique in 205 F2 individuals. A linkage map was constructed with a total of 142 markers and these markers were assigned to nine linkage groups together with simple sequence repeat markers mapped previously on the published linkage maps of Brassica oleracea. The linkage map spanned 909 cM with an average marker distance of 6.4 cM. A fertility restorer locus (Rfm1) was mapped on LG1, corresponding to chromosome 3, along with a flower color locus at a distance of 25 cM. SNP markers flanking the Rfm1 locus were BoCL2642s at a distance of 2.5 cM on one side and BoCL2901s at a distance of 7.5 cM on the other side. All the SNP markers showed homology with Arabidopsis thaliana and Brassica rapa genome sequences. Three pentatricopeptide repeat genes of the P-subfamily, particularly expressed in buds of the restorer line, were identified and these genes could be potential candidate fertility restorer genes.  相似文献   

12.
St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a warm-season turfgrass commonly grown in the southern USA. In this study, the first linkage map for all nine haploid chromosomes of the species was constructed for cultivar ‘Raleigh’ and cultivar ‘Seville’ using a pseudo-F2 mapping strategy. A total of 160 simple sequence repeat markers were mapped to nine linkage groups (LGs) covering a total distance of 1176.24 cM. To demonstrate the usefulness of the map, quantitative trait loci (QTL) were mapped controlling field winter survival, laboratory-based freeze tolerance, and turf quality traits. Multiple genomic regions associated with these traits were identified. Moreover, overlapping QTL were found for winterkill and spring green up on LG 3 (99.21 cM); turf quality, turf density, and leaf texture on LG 3 (68.57–69.50 cM); and surviving green tissue and regrowth on LGs 1 (38.31 cM), 3 (77.70 cM), 6 (49.51 cM), and 9 (34.20 cM). Additional regions, where QTL identified in both field and laboratory-based/controlled environment freeze testing co-located, provided strong support that these regions are good candidates for true gene locations. These results present the first complete linkage map produced for St. Augustinegrass, providing a template for further genetic mapping. Additionally, markers linked to the QTL identified may be useful to breeders for transferring these traits into new breeding lines and cultivars.  相似文献   

13.
Verticillium wilt (VW) can cause substantial yield loss in hop particularly with the outbreaks of the lethal strain of Verticillium albo-atrum. To elucidate genetic control of VW resistance in hop, an F1 mapping population derived from a cross of cultivar Wye Target, with the predicted genetic basis of resistance, and susceptible male breeding line BL2/1 was developed to assess wilting symptoms and to perform QTL mapping. The genetic linkage map, constructed with 203 markers of various types using a pseudo-testcross strategy, formed ten major linkage groups (LG) of the maternal and paternal maps, covering 552.98 and 441.1 cM, respectively. A significant QTL for VW resistance was detected at LOD 7 on a single chromosomal region on LG03 of both parental maps, accounting for 24.2–26.0 % of the phenotypic variance. QTL analysis for alpha-acid content and yield parameters was also performed on this map. QTLs for these traits were also detected and confirmed our previously detected QTLs in a different pedigree and environment. The work provides the basis for exploration of QTL flanking markers for possible use in marker-assisted selection.  相似文献   

14.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

15.
Microsatellite markers have been extensively utilised in the leguminosae for genome mapping and identifying major loci governing traits of interest for eventual marker-assisted selection (MAS). The lack of available lentil-specific microsatellite sequences and gene-based markers instigated the mining and transfer of expressed sequence tag simple sequence repeat (EST-SSR)/SSR sequences from the model genome Medicago truncatula, to enrich an existing intraspecific lentil genetic map. A total of 196 markers, including new 15 M. truncatula EST-SSR/SSR, were mapped using a population of 94 F5 recombinant inbred lines produced from a cross between cv. Northfield (ILL5588)?×?cv. Digger (ILL5722) and clustered into 11 linkage groups (LG) covering 1156.4?cM. Subsequently, the size and effects of quantitative trait loci (QTL) conditioning Ascochyta lentis resistance at seedling and pod/maturity stages were characterised and compared. Three QTL were detected for seedling resistance on LG1 and LG9 and a further three were detected for pod/maturity resistance on LG1, LG4 and LG5. Together, these accounted for 34 and 61% of the total estimated phenotypic variation, respectively, and demonstrated that resistance at the different growth stages is potentially conditioned by different genomic regions. The flanking markers identified may be useful for MAS and for the future pyramiding of potentially different resistance genes into elite backgrounds that are resistant throughout the cropping season.  相似文献   

16.
A nuclear male-sterile mutant, NMS 360, induced by streptomycin from an inbred maintainer line HA 89, possesses a single recessive gene, ms9, controlling male sterility. The present study identified DNA markers linked to the ms9 gene in an F2 population derived from the cross of NMS 360 × RHA 271 and maps the ms9 gene to an existing sunflower SSR linkage map. Bulked segregant analysis was performed using the target region amplification polymorphism (TRAP) marker technique and the simple sequence repeats (SSR) technique. From 444 primer combinations, six TRAP markers linked with the ms9 gene were amplified. Two markers, Ts4p03-202 and Tt3p09-529, cosegregated with the ms9 gene. The other four markers, To3d14-310, Tt3p17-390, Ts4p23-300, and Tt3p09-531, linked with ms9 at a distance of 1.2, 3.7, 10.3, and 22.3 cM, respectively. Thirty SSR primers from 17 linkage groups of a PHA × PHB cultivated sunflower linkage map were screened among the two parents and the F2 population. SSR primer ORS 705 of linkage group 10 was tightly linked to ms9 at a distance of 1.2 cM. The ms9 gene was subsequently mapped to linkage group 10 of the public sunflower SSR linkage map. The markers that were tightly linked with the ms9 gene will be useful in marker-assisted selection of male-sterile plants among segregating populations, and will facilitate the isolation of the ms9 gene by map-based cloning.  相似文献   

17.
Body weight and length are economical important traits in aquaculture species influenced by quantitative trait loci (QTL) and environmental factors. In this study, a backcross (BC1) common carp family, with 86 progeny, was utilized to construct genetic map for preliminary QTL mapping. The genetic map was constructed with 366 markers, including 191 SNP from gene, coverage 50 linkage groups with an average marker distance of 18.5 cM. A total of fourteen QTLs associated with body weight (BW), body length (BL) and condition factor (K) were detected on ten linkage groups (LGs). Among these QTLs detected, three (qBW8, qBL8 and qK8) were associated with BW, BL and K respectively, were mapped on LG8. qBW8 and qK8 were identified on similar interval neared locus HLJ2394 explained 14.9 and 20.9 % of the phenotype variance, while qBL8 was identified on separate nearby locus HLJ571 with 30.8 % of phenotype variance. Two QTLs, qBW13 and qK13, related with BW and K separately, were found on LG13 at different locus with phenotype variance of 25.3 and 20.9 %. Other two QTLs, qBW19 and qBL19, associated to BW and BL were mapped on same region near SNP0626 on LG19, and explained 10.3 and 15.6 % of phenotype variance. While other seven QTLs related with BW and BL were located on different LGs. Confidential interval was ranged from 1.1 to 10 cM in the present study. These markers, with lower QTL interval, have great influence on the body weight and length. Therefore, these QTLs will be helpful to find out the genes related with specific trait.  相似文献   

18.
The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore the fertility of CMS 514A. Here, we report the discovery, characterization, and molecular mapping of a novel Rf gene for CMS 514A derived from an amphiploid (Amp H. angustifolius/P 21, 2n = 68). Progeny analysis of the male-fertile (MF) plants (2n = 35) suggested that this gene, designated Rf6, was located on a single alien chromosome. Genomic in situ hybridization (GISH) indicated that Rf6 was on a chromosome with a small segment translocation on the long arm in the MF progenies (2n = 34). Rf6 was mapped to linkage group (LG) 3 of the sunflower SSR map. Eight markers were identified to be linked to this gene, covering a distance of 10.8 cM. Two markers, ORS13 and ORS1114, were only 1.6 cM away from the gene. Severe segregation distortions were observed for both the fertility trait and the linked marker loci, suggesting the possibility of a low frequency of recombination or gamete selection in this region. This study discovered a new CMS/Rf gene system derived from wild species and provided significant insight into the genetic basis of this system. This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes.  相似文献   

19.
The razor clam (Sinonovacula constricta) is an important aquaculture species, for which a high-density genetic linkage map would play an important role in marker-assisted selection (MAS). In this study, we constructed a high-density genetic map and detected quantitative trait loci (QTLs) for Sinonovacula constricta with an F1 cross population by using the specific locus amplified fragment sequencing (SLAF-seq) method. A total of 315,553 SLAF markers out of 467.71 Mreads were developed. The final linkage map was composed of 7516 SLAFs (156.60-fold in the parents and 20.80-fold in each F1 population on average). The total distance of the linkage map was 2383.85 cM, covering 19 linkage groups with an average inter-marker distance of 0.32 cM. The proportion of gaps less than 5.0 cM was on average 96.90%. A total of 16 suggestive QTLs for five growth-related traits (five QTLs for shell height, six QTLs for shell length, three QTLs for shell width, one QTL for total body weight, and one QTL for soft body weight) were identified. These QTLs were distributed on five linkage groups, and the regions showed overlapping on LG9 and LG13. In conclusion, the high-density genetic map and QTLs for S. constricta provide a valuable genetic resource and a basis for MAS.  相似文献   

20.
Soybean [Glycine max (L.) Merr.] was one of the most important legume crops in the world in 2010. Japanese beetles (JB; Popillia japonica, Newman) in the US were an introduced and potentially damaging insect pest for soybean. JBs are likely to spread across the US if global warming occurs. Resistance to JB in soybean was previously reported only in plant introductions. The aims here were to identify loci underlying resistance to JB herbivory in recombinant inbred lines (RILs) derived from the cross of Essex × Forrest cultivars (EF94) and to correlate those with loci with factors that confer insect resistance in soybean cultivars. The RIL population was used to map 413 markers, 238 satellite markers and 177 other DNA markers. Field data were from two environments over 2 years. Pest severity (PS) measured defoliation on a 0–9 scale. Pest incidence (PI) was the percentage of plants within each RIL with beetles on them. Antibiosis and antixenosis data were from feeding assays with detached leaves in petri plates. Five QTL were detected for the mean PS field trait (16% < R 2 < 27%). The loci were within the intervals Satt632–A2D8 on linkage group (LG) A2 (chromosome 8); Satt583–Satt415 on LG B1 (11); Satt009–Satt530 on LG N (3); and close to two markers OB02_140 (LG E; 20 cM from Satt572) and OZ15_150 LG (19 cM from Satt291 C2). Two QTL were detected for the mean PI field trait (16% < R 2 < 18%) close to Satt385 on LG A1 and Satt440 on LG I. The no choice feeding studies detected three QTL that were significant; two for antixenosis (22% < R 2 < 24%) between Satt632–A2D8 on LG A2 (8) and Sat_039–Satt160 on LG F (13); and a major locus effect (R 2 = 54%) for antibiosis on LG D2 (17) between Satt464–Satt488. Therefore, loci underlying resistance to JB herbivory were a mixture of major and minor gene effects. Some loci were within regions underlying resistance to soybean cyst nematode (LGs A2 and I) and root knot nematode (LG F) but not other major loci underlying resistance to nematode or insect pests (LGs G, H and M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号