首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

2.
Wheat stripe rust is a destructive disease that affects most wheat-growing areas worldwide. Resistance genes from related species and genera add to the genetic diversity available to wheat breeding programs. The stripe rust-resistant introgression line H9020-17-25-6-4 was developed from a cross of resistant Psathyrostachys huashanica with the susceptible wheat cultivar 7182. H9020-17-25-6-4 is resistant to all existing Chinese stripe rust races, including the three most widely virulent races, CYR32, CYR33, and V26. We attempted to characterize this new line by genomic in situ hybridization (GISH) and genetic analysis. GISH using P. huashanica genomic DNA as a probe indicated that the translocated segment was too small to be detected. Genetic analysis involving F1, F2, and F2:3 materials derived from a cross of Mingxian 169 and H9020-17-25-6-4 indicated that a single dominant gene from H9020-17-25-6-4, temporarily designated YrHu, conferred resistance to CYR29 and CYR33. A genetic map consisting of four simple sequence repeat, two sequence-tagged site (STS), and two sequence-related amplified polymorphism markers was constructed. YrHu was located on the short arm of chromosome 3A and was about 0.7 and 1.5 cM proximal to EST-STS markers BG604577 and BE489244, respectively. Both the gene and the closely linked markers could be used in marker-assisted selection.  相似文献   

3.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

4.
5.
Cryptomeria japonica pollinosis is one of the most serious allergic diseases in Japan; this is a social problem because C. japonica is the most important Japanese forestry species. In order to reduce the amount of pollen dispersed, breeding programs using trees with male-sterile genes have been implemented. High-density linkage maps with stable ordering of markers facilitate the localization of male-sterile genes and the construction of partial linkage maps around them in order to develop markers for use in marker-assisted selection. In this study, a high-density linkage map for C. japonica with 2560 markers was constructed. The observed map length was 1266.2 cM and the mean distance between adjacent markers was 0.49 cM. Using information from this high-density map, we newly located two male-sterile genes (ms3 and ms4) on the first and fourth linkage groups, respectively, and constructed partial linkage maps around these loci. We also constructed new partial linkage maps around the ms1 and ms2 loci using additional SNP markers. The closest markers to the ms1, ms2, ms3, and ms4 male-sterile loci were estSNP04188 (1.8 cM), estSNP00695 (7.0 cM), gSNP05415 (3.1 cM), and estSNP01408 (7.0 cM) respectively. These results allowed us to develop SNP markers tightly linked to the male sterile genes for use in MAS; this will accelerate the future isolation of these genes by map-based cloning approaches.  相似文献   

6.
Leaf rust of wheat, caused by Puccinia triticina, is an important disease throughout the world. The adult plant leaf rust resistance gene Lr48 reported in CSP44 was previously mapped in chromosome 2B, but the marker–gene association was weak. In this study, we confirmed the location of Lr48 to be in the short arm of chromosome 2B and identified closely linked markers suitable for use in breeding. The CSP44/WL711 recombinant inbred line (RIL) population (90 lines) showed monogenic segregation for Lr48. Twelve resistant and 12 susceptible RILs were used for selective genotyping using an iSelect 90K Infinium SNP assay. Closely linked SNPs were converted into Kompetitive allele-specific primers (KASP) and tested on the parental lines. KASP markers giving clear clusters for alternate genotypes were assayed on the entire RIL population. SNP markers IWB31002, IWB39832, IWB34324, IWB72894 and IWB36920 co-segregated with Lr48 and the marker IWB70147 was mapped 0.3 cM proximal to this gene. Closely linked KASP markers were tested on a set of Australian and Nordic wheat genotypes. The amplification of SNP alleles alternate to those linked with Lr48 in the majority of the Australian and Nordic wheat genotypes demonstrated the usefulness of these markers for marker-assisted pyramiding of Lr48 with other rust resistance genes.  相似文献   

7.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

8.
Melon (Cucumis melo L.) is one of the most popular and highly nutritious vegetable species within Cucurbitaceae. Because appearance is used as an important indicator of quality, the spotted to non-spotted trait associated with this product somewhat influences the buying habits of consumers. We tested a six-generation family to determine the inheritance and genetic basis of this trait. Genetic groups F1, F2, BC1P1, and BC1P2 were from a cross between “IM16559” (non-spotted) and “IM16553” (spotted). Our genetic analysis showed that the spotted to non-spotted trait was controlled by a single dominant gene that we named CmSp-1. Whole-genome resequencing-bulked segregant analysis (WG-BSA) demonstrated that this gene was located on the end of chromosome 2, in the intersections of 22,160,000 to 22,180,000 bp and 22,260,000 to 26,180,000 bp, an interval distance of 3.94 Mb. Insertion-deletion (InDel) markers designed based on WG-BSA data were used to map this gene. Using 13 InDel markers, we produced a genetic map indicating that CmSp-1 was tightly linked to markers I734-2 and I757, with genetic distances of 1.8 and 0.4 cM and an interval distance of 280.872 kb. The closest marker was I757. Testing of 107 different melon genotypes presented an accuracy of 84.11% in predicting the phenotype. By being able to locate CmSp-1 in melon, we can now use the findings to identify potential targets for further marker-assisted breeding and cloning projects.  相似文献   

9.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

10.
11.
Australian cultivar Sunco carries three adult plant stripe rust resistance genes. One of these genes corresponded to Yr18 in chromosome 7DS; the second, YrCK, was mapped on chromosome 2D. Here, we describe the characterization of the third adult plant resistance (APR) gene from Sunco. Sunco/2*Avocet S-derived lines SA65 (resistant) and SA67 (susceptible) were crossed and a recombinant inbred line F6 population was generated. Monogenic segregation among SA65/SA67-derived RIL population was demonstrated and the resistance locus was designated YrSA3. Selective genotyping using an iSelect 90 K Infinium SNP array and SSR markers located YrSA3 on chromosome 3D. Development of KASP markers for SNP loci showing association with YrSA3 allowed construction of a genetic map harboring the resistance gene. Ten KASP markers (KASP_8306, KASP_9142, KASP_10438, KASP_16434, KASP_17207, KASP_20836, KASP_23518, KASP_23615, KASP_57983 and KASP_63653), one SSR marker (gwm114b) and Lr24/Sr24 were mapped 1.8 cM distal to YrSA3. Comparison of marker data indicated that the previously named seedling stripe rust resistance gene Yr45 was located proximal to YrSA3, and therefore the latter was formally designated Yr71. Two recombinants carrying Lr24/Sr24 and Yr71 in combination were identified for use as donor sources in wheat breeding programs. The robustness of gwm114b, KASP_16434, KASP_17207 and KASP_20836 for marker-assisted selection of these genes was demonstrated through tests on 74 Australian wheat cultivars.  相似文献   

12.
Rice is one of the most important food crops in the world. Genetic diversity is essential for cultivar improvement programs. We compared genetic diversity derived from insertion–deletion (in–del) or base substitutions by amplified fragment length polymorphism (AFLP), from transposon transposition mutations by transposon display (TD), and from cytosine methylation by methylation-sensitive amplified polymorphism (MSAP) in japonica, indica, and Tongil type varieties of Oryza sativa L. Polymorphic profiles from the three marker systems allowed us to clearly distinguish the three types of varieties. The indica type varieties showed the highest genetic diversity followed by the Tongil and japonica type varieties. Of the three marker systems, TD produced the highest marker indices, and AFLP and MSAP produced similar marker indices. Pair-wise comparisons of the three marker systems showed that the correlation between the two genetic markers systems (AFLP and TD, r = 0.959) was higher than the correlations between the genetic and epigenetic marker systems (AFLP and MSAP, r = 0.52; TD and MSAP, r = 0.505). Both genetic marker systems had similar levels of gene differentiation (G ST ) and gene flow (N m ), which differed in the epigenetic marker system. Although the G ST of the epigenetic marker system was lower than the genetic marker systems, the N m of the epigenetic marker system was higher than in the genetic marker systems, indicating that epigenetic variations have a greater influence than genetic variations among the O. sativa L. types.  相似文献   

13.
The construction of a high-resolution genetic map of citrus would be of great value to breeders and to associate genomic regions with characteristics of agronomic interest. Here, we describe a novel high-resolution map of citrus using a population derived from a controlled cross between Citrus sunki (female parent) and Poncirus trifoliata (male parent). The genetic linkage maps were constructed using DArTseq markers and a pseudo-testcross strategy; only markers showing the expected segregation ratio were considered. To investigate synteny, all markers from both linkage maps were aligned with the genome of Citrus sinensis. The C. sunki map has a total of 2778 molecular markers and a size of 2446.6 cM, distributed across ten linkage groups. The map of P. trifoliata was built with 3084 markers distributed in a total of nine linkage groups, with a total size of 2411.6 cM. These maps are the most saturated linkage maps available for C. sunki and P. trifoliata and have high genomic coverage. We also demonstrated that the maps reported here are closely related to the reference genome of C. sinensis.  相似文献   

14.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

15.
Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust has long been a major disease impacting sugarcane production worldwide. Resistance resource and markers linked to resistance are valuable tools for disease resistance improvement. An F1 segregating population derived from a cross between two hybrid sugarcane clones, brown rust-susceptible CP95-1039 and brown rust-resistant CP88-1762, were genotyped using genotyping by sequencing approach and also phenotyped in a replicated field trial. Single nucleotide polymorphism (SNP) and presence/absence markers were called with seven different pipelines to maximize reliable marker identification. High-density maps were constructed for both parental clones with a total map length of 4224.4 cM, and a marker density of one marker per 1.7 cM for CP95-1039, and a total map length of 4373.2 cM, and one marker per 2.0 cM for CP88-1762. Among the seven SNP callers, Tassel and Genome Analysis ToolKit performed better than other callers in single-dose SNP detection and contribution to genetic maps. Two major quantitative trait loci (QTL) controlling brown rust resistance were identified, which can explain 21 and 30% of the phenotypic variation, respectively. The genetic maps generated here will improve our understanding of sugarcane’s complex genome structure and discovery of underlying sequence variations controlling agronomic traits. The putative QTL controlling brown rust resistance can effectively be utilized in sugarcane breeding programs to expedite the selection process of brown rust resistance after validation.  相似文献   

16.
Klebsiella pneumoniae is a 2,3-butanediol producer, and R-acetoin is an intermediate of 2,3-butanediol production. R-acetoin accumulation and dissimilation in K. pneumoniae was studied here. A budC mutant, which has lost 2,3-butanediol dehydrogenase activity, accumulated high levels of R-acetoin in culture broth. However, after glucose was exhausted, the accumulated R-acetoin could be reused by the cells as a carbon source. Acetoin dehydrogenase enzyme system, encoded by acoABCD, was responsible for R-acetoin dissimilation. acoABCD mutants lost the ability to grow on acetoin as the sole carbon source, and the acetoin accumulated could not be dissimilated. However, in the presence of another carbon source, the acetoin accumulated in broth of acoABCD mutants was converted to 2,3-butanediol. Parameters of R-acetoin production by budC mutants were optimized in batch culture. Aerobic culture and mildly acidic conditions (pH 6–6.5) favored R-acetoin accumulation. At the optimized conditions, in fed-batch fermentation, 62.3 g/L R-acetoin was produced by budC and acoABCD double mutant in 57 h culture, with an optical purity of 98.0 %, and a substrate conversion ratio of 28.7 %.  相似文献   

17.

Key message

A new and dominant R gene Stb19 is identified from a soft wheat cultivar ‘Lorikeet’ and was mapped on the distal region of chromosome 1DS. Two tightly linked KASP markers were also discovered and validated for molecular-assisted breeding programs.

Abstract

A new R gene, designated as Stb19, provides resistance to Zymoseptoria tritici in wheat. This new dominant gene resides on the short arm of chromosome 1D, exhibiting complete resistance to three Z. tritici isolates, WAI332, WAI251, and WAI161, at the seedling stage. A genetic linkage map, based on an F2:3 population of ‘Lorikeet’ and ‘Summit,’ found the Stb19 gene at a 9.3 cM region on 1DS, closely linked with two Kompetitive Allele-Specific PCR markers, snp_4909967 and snp_1218021. Further, the two markers were tested and validated in another F2:3 population and 266 different wheat accessions, which gave over 95% accuracy of resistance/susceptibility prediction. Combined with the physical location of the identified SNPs and the previous evidence of gene order on chromosome 1DS (centromere–Sr45Sr33Lr21–telomere), Stb19 is proposed to be located between Sr33 and Lr21. Thus, the newly discovered Stb19 along with the KASP markers represents an increase in genetic resources available for wheat breeding resistance to Z. tritici.
  相似文献   

18.
One of the most important cucumber diseases is bacterial angular leaf spot (ALS), whose increased occurrence in open-field production has been observed over the last years. To map ALS resistance genes, a recombinant inbred line (RIL) mapping population was developed from a narrow cross of cucumber line Gy14 carrying psl resistance gene and susceptible B10 line. Parental lines and RILs were tested under growth chamber conditions as well as in the field for angular leaf spot symptoms. Based on simple sequence repeat and DArTseq, genotyping a genetic map was constructed, which contained 717 loci in seven linkage groups, spanning 599.7 cM with 0.84 cM on average between markers. Monogenic inheritance of the lack of chlorotic halo around the lesions, which is typical for ALS resistance and related with the presence of recessive psl resistance gene, was confirmed. The psl locus was mapped on cucumber chromosome 5. Two major quantitative trait loci (QTL) psl5.1 and psl5.2 related to disease severity were found and located next to each other on chromosome 5; moreover, psl5.1 was co-located with psl locus. Identified QTL were validated in the field experiment. Constructed genetic map and markers linked to ALS resistance loci are novel resources that can contribute to cucumber breeding programs.  相似文献   

19.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease of wheat worldwide. Host resistance is the best way to control the disease. Genetic analysis of F2 and F2:3 populations from an Avocet S/Jimai 22 cross indicated that stripe rust resistance in Jimai 22 was conferred by a single dominant gene, tentatively designated YrJ22. A total of 377 F2 plants and 127 F2:3 lines were tested with Chinese Pst race CYR32 and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. A linkage map was constructed with five SSR and two SNP markers. Xwmc658 and IWA1348 flanked YrJ22 at genetic distances of 1.0 and 7.3 cM, proximally and distally, respectively. The chromosomal location was confirmed using Chinese Spring nulli-tetrasomic, ditelosomics and deletion lines. Seedling reactions to 21 Pst races demonstrated differences in specificity between YrJ22 and other resistance genes on chromosome 2AL, indicating that YrJ22 is likely to be a new wheat stripe rust resistance gene.  相似文献   

20.
Evaluation of wheat for spot blotch disease resistance relies on various visual observation methods. The person evaluating the lines needs to be experienced in scoring disease severity. To facilitate high-throughput phenotyping, a hand-held green seeker NDVI sensor was used to map spot blotch disease resistance QTLs. A total of 108 germplasm lines along with 335 SSD-derived lines (F4 and F5 generations) originating from the cross ‘YS116 × Sonalika’ were used. The population was evaluated at BISA, Pusa Bihar, a hot spot for spot blotch, for 2 consecutive years. Data were recorded using the NDVI as well as by visual observation as % disease severity. The correlation coefficient was calculated between two scoring methods (NDVI and % DS) recorded at different growth stages. High negative correlation was observed between the NDVI and % DS at GS69 and GS77 on Zadoks' scale. With both methods, the QTL was mapped in the same chromosomal region on 5BL. Using the NDVI value, the detected QTL explained up to 54.9 % of phenotypic variation while up to 56.1 % using the % DS. The Sb2 gene was mapped between the markers Xgwm639 and Xgwm1043 with an interval of 0.62 cM. The markers linked to the Tsn1 gene (Xfcp1 and Xfcp623) were mapped 1.1 cM apart from the sb2 gene. It is concluded that the NDVI the can be used as an alternative to visual scoring of spot blotch disease in wheat and create a new avenue for high-throughput phenotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号