首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  相似文献   

2.
BACKGROUND: Caspases are a family of aspartate-specific cysteine proteases that play an essential role in initiating and executing programmed cell death (PCD) in metazoans. Caspase-like activities have been shown to be required for the initiation of PCD in plants, but the genes encoding those activities have not been identified. VPEgamma, a cysteine protease, is induced during senescence, a form of PCD in plants, and is localized in precursor protease vesicles and vacuoles, compartments associated with PCD processes in plants. RESULTS: We show that VPEgamma binds in vivo to a general caspase inhibitor and to caspase-1-specific inhibitors, which block the activity of VPEgamma. A cysteine protease inhibitor, cystatin, accumulates to 20-fold higher levels in vpegamma mutants. Homologs of cystatin are known to suppress hypersensitive cell death in plant and animal systems. We also report that infection with an avirulent strain of Pseudomonas syringae results in an increase of caspase-1 activity, and this increase is partially suppressed in vpegamma mutants. Plants overexpressing VPEgamma exhibit a greater amount of ion leakage during infection with P. syringae, suggesting that VPEgamma may regulate cell death progression during plant-pathogen interaction. VPEgamma expression is induced after infection with P. syringae, Botrytis cinerea, and turnip mosaic virus, and knockout of VPEgamma results in increased susceptibility to these pathogens. CONCLUSIONS: We conclude that VPEgamma is a caspase-like enzyme that has been recruited in plants to regulate vacuole-mediated cell dismantling during cell death, a process that has significant influence in the outcome of a diverse set of plant-pathogen interactions.  相似文献   

3.
The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses.  相似文献   

4.
NopT1 and NopT2, putative type III effectors from the plant symbiotic bacterium Bradyrhizobium japonicum, are predicted to belong to a family of YopT/AvrPphB effectors, which are cysteine proteases. In the present study, we showed that both NopT1 and NopT2 indeed possess cysteine protease activity. When overexpressed in Escherichia coli, both NopT1 and NopT2 undergo autoproteolytic processing which is largely abolished in the presence of E-64, a papain family-specific inhibitor. Mutations of NopT1 disrupting either the catalytic triad or the putative autoproteolytic site reduce or markedly abolish the protease activity. Autocleavage likely occurs between residues K48 and M49, though another potential cleavage site is also possible. NopT1 also elicitis HR-like cell death when transiently expressed in tobacco plants and its cysteine protease activity is essential for this ability. In contrast, no macroscopic symptoms were observed for NopT2. Furthermore, mutational analysis provided evidence that NopT1 may undergo acylation inside plant cells and that this would be required for its capacity to elicit HR-like cell death in tobacco.  相似文献   

5.
Activation of aspartate-specific cysteine proteases (caspases) plays a crucial role in programmed cell death (PCD) in animals. Although to date caspases have not been identified in plants, caspase-like activity was described in tobacco during a hypersensitive response to pathogens and in Arabidopsis and tomato cell cultures during chemical-induced PCD. Caspase-like activity was also detected in the course of plant development during petal senescence and endosperm PCD. It is shown here that caspase-like proteases play a crucial role in the developmental cell death of secondary shoots of pea seedlings that emerge after removal of the epicotyl. Caspase-like activity was induced in senescing secondary shoots, but not in dominant growing shoots, in contrast to the papain-like cysteine protease activity that was stronger in the dominant shoot. Revitalization of the senescing shoot by cutting of the dominant shoot reduced the caspase-like activity. Injection of caspase or cysteine protease inhibitors into the remaining epicotyl tissue suppressed the death of the secondary shoots, producing seedlings with two equal shoots. These results suggest that shoot selection in pea seedlings is controlled by PCD, through the activation of caspase-like proteases.  相似文献   

6.
Helminthic cysteine proteases are well known to play critical roles in tissue invasion, nutrient uptake, and immune evasion of the parasites. In the same manner, the sparganum, the plerocercoid of Spirometra mansoni, is also known to secrete a large amount of cysteine proteases. However, cysteine protease inhibitors regulating the proteolytic activities of the cysteine protease are poorly illustrated. In this regard, we partially purified an endogenous cysteine protease inhibitor from spargana and characterized its biochemical properties. The cysteine protease inhibitor was purified by sequential chromatographies using Resource Q anion exchanger and Superdex 200 HR gel filtration from crude extracts of spargana. The molecular weight of the purified protein was estimated to be about 11 kD on SDS-PAGE. It was able to inhibit papain and 27 kDa cysteine protease of spargana with the ratio of 25.7% and 49.1%, respectively, while did not inhibit chymotrypsin. This finding suggests that the cysteine protease inhibitor of spargana may be involved in regulation of endogenous cysteine proteases of the parasite, rather than interact with cysteine proteases from their hosts.  相似文献   

7.
Plants, animals, and several branches of unicellular eukaryotes use programmed cell death (PCD) for defense or developmental mechanisms. This argues for a common ancestral apoptotic system in eukaryotes. However, at the molecular level, very few regulatory proteins or protein domains have been identified as conserved across all eukaryotic PCD forms. A very important goal is to determine which molecular components may be used in the execution of PCD in plants, which have been conserved during evolution, and which are plant-specific. Using Arabidopsis thaliana, we have shown that UV radiation can induce apoptosis-like changes at the cellular level and that a UV experimental system is relevant to the study of PCD in plants. We report here that UV induction of PCD required light and that a protease cleaving the caspase substrate Asp-Glu-Val-Asp (DEVDase activity) was induced within 30 min and peaked at 1 h. This DEVDase appears to be related to animal caspases at the biochemical level, being insensitive to broad-range cysteine protease inhibitors. In addition, caspase-1 and caspase-3 inhibitors and the pan-caspase inhibitor p35 were able to suppress DNA fragmentation and cell death. These results suggest that a YVADase activity and an inducible DEVDase activity possibly mediate DNA fragmentation during plant PCD induced by UV overexposure. We also report that At-DAD1 and At-DAD2, the two A. thaliana homologs of Defender against Apoptotic Death-1, could suppress the onset of DNA fragmentation in A. thaliana, supporting an involvement of the endoplasmic reticulum in this form of the plant PCD pathway.  相似文献   

8.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.  相似文献   

9.
Fusion proteins integrating dual pesticidal functions have been devised over the last 10 years to improve the effectiveness and potential durability of pest-resistant transgenic crops, but little attention has been paid to the impact of the fusion partners on the actual activity of the resulting hybrids. Here we assessed the ability of the rice cysteine protease inhibitor, oryzacystatin I (OCI), to retain its protease inhibitory potency when used as a template to devise hybrid inhibitors with dual activity against papain-like proteases and carboxypeptidase A (CPA). C-terminal variants of OCI were generated by fusing to its C-terminal end: (i) the primary inhibitory site of the small CPA inhibitor potato carboxypeptidase inhibitor (PCI, amino acids 35-39); or (ii) the complete sequence of PCI (a.a. 1-39). The hybrid inhibitors were expressed in E. coli and tested for their inhibitory activity against papain, CPA and digestive cysteine proteases of herbivorous and predatory arthropods. In contrast with the primary inhibitory site of PCI, the entire PCI attached to OCI was as active against CPA as free, purified PCI. The OCI-PCI hybrids also showed activity against papain, but the presence of extra amino acids at the C terminus of OCI negatively altered its inhibitory potency against cysteine proteases. This negative effect, although not preventing dual binding to papain and CPA, was correlated with an increased binding affinity for papain presumably due to non-specific interactions with the PCI domain. These results confirm the potential of OCI and PCI for the design of fusion inhibitors with dual protease inhibitory activity, but also point out the possible functional costs associated with protein domain grafting to recipient pesticidal proteins.  相似文献   

10.
Protein inhibitors of proteolytic enzymes play an important role in regulating the activity of endogenous proteases and in host defense mechanisms against pathogens preventing the deleterious effects of exogenous proteases. In recent years a great interest in protein inhibitors of cysteine proteases has increased due to the extensive growth of knowledge about the contribution of cysteine proteases to pathological processes associated with many human diseases, as well as due to prospects for treatment of these disorders which may arise from the thorough understanding of their inhibitory mechanisms. This paper reviews the most important aspects of three families of cysteine protease inhibitors: cystatins, thyropins and inhibitors homologous to propeptides of cysteine proteases. Special attention is given to structural bases of the interactions between the inhibitors and their target enzymes. The paper presents a general characterization of the families according to the MEROPS classification of protease inhibitors, pointing out new members.  相似文献   

11.
12.
Cathepsin V is a lysosomal cysteine protease that is expressed in the thymus, testis and corneal epithelium. We have determined the 1.6 A resolution crystal structure of human cathepsin V associated with an irreversible vinyl sulfone inhibitor. The fold of this enzyme is similar to the fold adopted by other members of the papain superfamily of cysteine proteases. This study provides a framework for understanding the structural basis for cathepsin V's activity and will aid in the design of inhibitors of this enzyme. A comparison of cathepsin V's active site with the active sites of related proteases revealed a number of differences, especially in the S2 and S3 subsites, that could be exploited in identifying specific cathepsin V inhibitors or in identifying inhibitors of other cysteine proteases that would be selective against cathepsin V.  相似文献   

13.
In this study, the effects of the accumulation of cysteine protease inhibitors on the food preferences of adult female western flower thrips, Frankliniella occidentalis (Pergande), were investigated. Representative members of the cystatin and thyropin gene families (stefin A, cystatin C, kininogen domain 3 and equistatin) were expressed in potato (Solanum tuberosum) cv. Impala, Kondor and Line V plants. In choice assays, a strong time- and concentration-dependent deterrence from plants expressing stefin A and equistatin was observed. Cystatin C and kininogen domain 3 were not found to be active. All tested inhibitors were equally or more active than stefin A at inhibiting the proteolytic activity of thrips, but, in contrast with stefin A, they were all expressed in potato as partially degraded proteins. The resistance of cysteine protease inhibitors against degradation in planta by endogenous plant proteases may therefore be relevant in explaining the observed differences in the deterrence of thrips. The results demonstrate that, when given a choice, western flower thrips will select plants with low levels of certain cysteine protease inhibitors. The novel implications of the defensive role of plant cysteine protease inhibitors as both deterrents and antimetabolic proteins are discussed.  相似文献   

14.
The closely related serpins squamous cell carcinoma antigen-1 and -2 (SCCA-1 and -2, respectively) are capable of inhibiting cysteine proteases of the papain superfamily. To ascertain whether the ability to inhibit cysteine proteases is an intrinsic property of serpins in general, the reactive center loop (RCL) of the archetypal serine protease inhibitor alpha(1)-antitrypsin was replaced with that of SCCA-1. It was found that this simple substitution could convert alpha(1)-antitrypsin into a cysteine protease inhibitor, albeit an inefficient one. The RCL of SCCA-1 is three residues longer than that of alpha(1)-antitrypsin, and therefore, the effect of loop length on the cysteine protease inhibitory activity was investigated. Mutants in which the RCL was shortened by one, two, or three residues were effective inhibitors with second-order rate constants of 10(5)-10(7) M(-)(1) s(-)(1). In addition to loop length, the identity of the cysteine protease was of considerable importance, since the chimeric molecules inhibited cathepsins L, V, and K efficiently, but not papain or cathepsin B. By testing complexes between an RCL-mimicking peptide and the mutants, it was found that the formation of a stable serpin-cysteine protease complex and the inhibition of a cysteine protease were both critically dependent on RCL insertion. The results strongly indicate that the serpin body is intrinsically capable of supporting cysteine protease inhibition, and that the complex with a papain-like cysteine protease would be expected to be analogous to that seen with serine proteases.  相似文献   

15.
The synthesis and biological evaluation of a new class of selective irreversible cysteine protease inhibitors is described. A set of amino acid based chloromethyl sulfoxides was prepared and they were found to inhibit irreversibly the cysteine protease papain. They were selective for cysteine proteases since no inhibition was found for the serine protease chymotrypsin.  相似文献   

16.
The T-DNA gene-trap system has been efficiently used to elucidate gene functions in plants. We report here a functional analysis of a cysteine protease gene, OsCP1, isolated from a pool of T-DNA insertional rice. GUS assay with the T-DNA tagged line indicated that the OsCP1 promoter was highly active in the rice anther. Sequence analysis revealed that the deduced amino acid sequence of OsCP1 was homologous to those of papain family cysteine proteases containing the highly conserved interspersed amino acid motif, ERFNIN. This result suggested that the gene encodes a cysteine protease in rice. We also identified a suppressed mutant from T2 progeny of the T-DNA tagged line. The mutant showed a significant defect in pollen development. Taken together, the results demonstrated that OsCP1 is a cysteine protease gene that might play an important role in pollen development.  相似文献   

17.
Cysteine proteases are present in all living organisms and, in animals, function in a vast array of physiological and pathological processes. Cysteine protease inhibitors act upon the cysteine proteases to regulate their activity. The cystatin superfamily of cysteine protease inhibitors has members represented in all living organisms studied to date. Here, we report the identification of a new member of the family 1 cystatin in Oplegnathus fasciatus rock bream (denoted as RbCyt B) and the characterization at the molecular level. The complete genomic sequence of RbCyt B consists of three exons and a promoter region. The open reading frame (ORF) encodes for a 100 amino acids length polypeptide with a single cystatin-like domain and a cysteine protease inhibitor signature motif. The conserved N-terminal glycine, glutamine-valine-glycine motif, QxVxG, and a variant of the proline-tryptophan, PW, motif were identified. RbCyt B showed closest phylogenetic distance to Dicentrarchus labrax cystatin B, and shared up to 73% amino acid identity and 90% amino acid similarity with known cystatin B genes. RbCyt B mRNA expression was detected in nine different tissues and was highly expressed in liver, spleen, gill, brain, intestine, kidney, head kidney, and blood, as compared with muscle. In vivo immune stimulation with Edwardsiella tarda bacteria caused significant up-regulation of RbCyt B mRNA in head kidney and spleen at 24h post-infection (P<0.05). Recombinant RbCyt B was expressed in Escherichia coli, and the purified protein demonstrated 82% papain inhibitory activity at 500 × 10(-3) μg μL(-1) in a concentration-dependent manner. These results suggest that RbCyt B is a member of family 1 cystatin with high homology to cystatin B, and is a biologically active protein possessing papain inhibitory activity and potentially involved in immune responses against invading Gram-negative bacteria in rock bream.  相似文献   

18.
Recombinant human cysteine protease inhibitor, stefin A, was expressed in both Escherichia coli and BS-C-1 monkey kidney cells utilizing pET and recombinant vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and Western blot analysis utilizing a polyclonal antibody against rat cystatin alpha. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A ( approximately 10kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BS-C-1 cells, was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells, on the other hand, can provide a significant research tool to study the functional roles of stefin A in mammalian systems such as regulation of cysteine proteases.  相似文献   

19.
This paper presents the cloning and biochemical characterisation of the cysteine protease Tr-cp 14 from white clover (Trifolium repens). The predicted amino acid sequence of Tr-cp 14 is 71%, 74% and 74% identical to the cysteine proteases XCP1 and XCP2 from Arabidopsis thaliana, and p48h-17 from Zinnia elegans, respectively. These cysteine proteases have previously been shown to be involved in programmed cell death during tracheary element differentiation. The precursor polypeptide of Tr-cp 14 was expressed in Escherichia coli, purified from inclusion bodies and refolded. The precursor polypeptide could be processed to its active mature form autocatalytically at pH 5.0 and had a requirement for 20 mM l-cysteine for optimal activity. Mature Tr-cp 14 showed a preference for synthetic aminomethylcoumarin substrates with either Leu or Phe in the P2 position when tested with Arg in P1. A substrate with Arg in both the P1 and P2 position was not accepted as substrate.  相似文献   

20.
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas’ disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号