首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

2.
The inducibility of DNA synthesis after treatment with cyclohexamide (CHM) during mitosis and the G1 phase of WI38 cells has been studied in the heterokaryons following fusion with HeLa cells in S phase. Synchronized mitotic cells treated for up to 5 h with CHM were not delayed in the initiation of DNA synthesis in the heterokaryons. The G1 cells treated with CHM for 3-24 h were slow in responding to inducers of DNA synthesis generated by HeLa cells in the heterokaryons. The results suggest that there is a specific point in early G1 that regulates the entry of cells into a cycling state. In the presence of CHM, mitotic cells divide, but the daughter cells fail to enter G1 leading to DNA synthesis, and CHM treatment of G1 cells results in their transient entry into a G0 state.  相似文献   

3.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

4.
Premature chromosome condensation and cell cycle analysis.   总被引:3,自引:0,他引:3  
The application of the phenomenon of premature chromosome condensation for cell cycle analysis in HeLa and CHO cells has been examined. Random populations of HeLa and CHO cells pulse labelled with H3-TdR were separately fused with mitotic HeLa cells using U.V. inactivated Sendai virus. The resulting prematurely condensed chromosomes (PCC) were scored and classified into G1, S and G2-PCC on the basis of both morphological and autoradiographic data, The results of this study indicated that the G1, S and G2 phase cells are equally susceptible to virus-induced fusion with mitotic cells and subsequent induction into PCC. Hence the PCC method for cell cycle analysis is both practical and accurate. This study also revealed that the process of chromosome decondensation initiated during the telophase of mitosis continues throughout the G1 period reaching an ultimate state of decondensation by the end of G1, at which point the fusion of such cells with those in mitosis yield PCC with the most diffused morphology instead of the discrete single stranded structures characteristic of early G1-PCC. Thus, the decondensation of chromatin during G1 appears to be a prerequisite for the subsequent initiation of DNA synthesis.  相似文献   

5.
The objective of this study was to determine whether transformed cells have greater DNA synthesis-inducing ability (DSIA) than normal cells when fused with G1 phase cells. HeLa cells synchronized in G1 phase, prelabeled with large latex beads, were fused separately with (a) quiescent human diploid fibroblasts (HDF), (b) HDF partially synchronized in late G1, and random populations of (c) HeLa, (d) WI-38, (e) SV-40 transformed WI-38, (f) CHO, (g) chemically transformed mouse cells (AKR-MCA), and (h) T98G human glioblastoma cells (all prelabeled with small latex beads) using UV-inactivated Sendai virus. The fusion mixture was incubated with [3H] thymidine, sampled at regular intervals, and processed for radioautography. Among the heterodikaryons, the frequency of those with a labeled and an unlabeled nuclei (L/U) were scored as a function of time after fusion. The faster the induction of DNA synthesis in HeLa G1, the steeper the drop in the L/U class and hence the higher DSIA in the S phase cells. The DSIA, which is indicative of the intracellular levels of the inducers of DNA synthesis, was the highest in HeLa and virally transformed WI-38 cells and the lowest in normal human diploid fibroblasts (HDF) while those of chemically and spontaneously transformed cells are intermediate between these two extremes. Higher level of DNA synthesis inducers appears to be one of the pleotropic effects of transformation by DNA tumor viruses. These studies also revealed that initiation of DNA synthesis per se is regulated by the presence of inducers and not by inhibitors.  相似文献   

6.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

7.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

8.
Autoradiographic patterns of DNA replication in serum-deprived human diploid fibroblast-like cells (HDFC) and “senescent” HDFC have been compared in two types of heterokaryons. Each was fused to low passage, proliferating HDFC and, in separate experiments, to HeLa cells. Sequential 1 h pulses with [3H]thymidine were initiated at short intervals following fusion. In all hybridizations serum-deprived and senescent cells behaved identically. Upon fusion to HeLa cells, DNA synthesis in the quiescent nuclei occurred in a wave between 3 and 30 h after fusion. When either serum-deprived or senescent HDFC were fused to young proliferating HDFC, the nuclei of the latter were blocked from entering the S phase if fusion occurred at least 3 h before the G/S boundary. These findings are consistent with the interpretation that one or more crucial steps in G0 occurs 3 h before the G1/S interface. That young serum-deprived (G0) HDFC behave identically to senescent cells in these hybridization studies suggests that the mechanism of arrest in each state might share a final common pathway, and a model based on these observations is proposed.  相似文献   

9.
Fusion between mitotic and interphase cells results in the premature condensation of the interphase chromosomes into a morphology related to the position in the cell cycle at the time of fusion. These prematurely condensed chromosomes (PCC) have been used in conjunction with u.v. irradiation to examine the interphase chromosome condensation cycle of HeLa cells. The following observations have been made: (I) There is a progressive decondensation of the chromosomes during G1 which is accentuated by u.v. irradiation: (2) The chromosomes become more resistant to u.v.-induced decondensation during G2 and mitosis. (3) There is a close correlation between the degree of chromosome decondensation and the amount of unscheduled DNA synthesis induced by u.v. irradiation during G1 and mitosis: (4) Hydroxyurea enhances the ability of u.v. irradiation to promote the decondensation of chromosomes during G1, G2 and mitosis. Hydroxyurea also potentiates the lethal action of u.v. irradiation during mitosis and G1. These data are discussed in relation to the suggestion that chromosomes undergo a progressive decondensation during G1 and condensation during G2.  相似文献   

10.
In two different cell fusion experiments a synchronized population of HeLa cells, prelabeled with 3H-TdR, was fused with an unlabeled one using inactivated Sendai virus. In the first experiment, HeLa cells in early G2 phase which were exposed to either 4 °C, cycloheximide, actinomycin D or X-irradiation were fused separately with untreated and more advanced G2 cells. A comparison of the rates of mitotic accumulation (in the presence of Colcemid) for the various classes of mono- and binucleate cells revealed that the hybrid (binucleate) cells were intermediate between those of the advanced and the retarded parental types indicating that the chromosome condensing factors of the advanced component were diluted as a result of such fusion. The manner in which the retarding effects of actinomycin D and cycloheximide were reversed in the hybrid cells suggested that proteins had a major role as chromosome condensing factors in the G2 mitotic transition. In the second experiment, when S phase HeLa cells were fused with those in G2, the resulting heterophasic (S/G2) binucleate cells reached mitosis at about the same time as the homophasic (S/S) cells of the lagging parent indicating a complete dominance of the S over the G2 with regard to their progress towards mitosis. However, the addition of Mg2+ (2 × 10?2 M of MgCl2) to the medium helped the G2 nuclei to enter mitosis asynchronously, which consequently induced premature chromosome condensation (PCC) in the S phase component. These data suggested that in the heterophasic (S/G2) binucleate cells the S phase component caused decondensation of the G2 chromatin thus blocking it from entering into mitosis. This effect which did not appear to be dose-dependent could be neutralized and the G2 nuclei relieved from this repression by an external supply of Mg2+ ions.  相似文献   

11.
The object of this study was to determine the kinetics of chromosome decondensation during the G1 period of the HeLa cell cycle. HeLa cells synchronized in the G1 period following the reversal of mitotic block were fused with Colcemid-arrested mitotic HeLa cells at 1.5, 3, 5, and 7 h after the reversal of N2O block. The resulting prematurely condensed chromosomes (PCC) were classified into six categories depending on the degree of their condensation. The frequency of occurrence of each category was plotted as a function of time after mitosis. The results of this study indicate that the process of chromosome decondensation, initiated during the telophase of mitosis continues throughout the G1 period without any interruption, thus the chromatin reaches an ultimate state of decondensation by the end of G1 period, when DNA synthesis is initiated.  相似文献   

12.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

13.
Indirect immunofluorescence microscopy with monoclonal antibody against DNA polymerase α revealed the intranuclear localization of DNA polymerase α in G1, S, and G2 phases of transformed human cells, and dispersed cytoplasmic distribution during mitosis. In the quiescent, G0 phase of normal human skin fibroblasts or lymphocytes, the α-enzyme was barely detectable by either immunofluorescence or enzyme activity. By exposing cells to proliferation stimuli, however, DNA polymerase a appeared in the nuclei just prior to onset of DNA synthesis, increased rapidly during S phase, reached the maximum level at late S and G2 phases, and was then redistributed to the daughter cells through mitosis. It was also found that the increase in the amount of DNA polymerase a by proliferation stimuli was not affected by inhibition of DNA synthesis with aphidicolin or hydroxyurea.  相似文献   

14.
Senescent human diploid cells (HDC) were fused to T98G human glioblastoma cells and to RK13 rabbit kidney cells, and DNA synthesis was analyzed in the heterodikaryons. T98G and RK13 cells are “partially transformed” cell lines that have some characteristics of normal cells, yet are transformed to immortality, i.e., they do not senesce. Previous experiments have shown that “fully transformed” HeLa and SV80 cells induce DNA synthesis in senescent HDC nuclei, whereas normal young HDC do not. Our experiments show that T98G and RK13 cells do not induce DNA synthesis in senescent HDC nuclei. These results demonstrate that the ability to induce DNA synthesis in senescent HDC is not correlated with immortality per se. Our results show further that a T98G cell in S phase at the time of fusion to a senescent HDC will continue to make DNA. However, a T98G cell in G1 phase at the time of fusion is prevented from initiating DNA synthesis. RK13 cells behave similarly to T98G. These results are consistent with the hypothesis that the molecular basis for the senescent phenotype involves a block that prevents cells in G1 phase from entering S phase. Thus, we conclude that the senescent phenotype can be dominant in heterokaryons composed of senescent HDC fused with certain immortal cell lines. To explain the different results obtained with various immortal cell lines, we present a model that suggests that T98G and RK13 cells are immortal because they have lost a normal regulatory factor, whereas HeLa and SV80 are immortal because they have gained a dominant transformation factor.  相似文献   

15.
Lytic infection of African green monkey kidney (CV-1) cells by simian virus 40 (SV40) is characterized by stimulation of DNA synthesis leading to bypass of mitosis and replication of cellular and viral DNA beyond a 4C DNA content. To define mechanisms underlying the absence of mitosis, the expression levels of upstream regulatory molecules of mitosis-promoting factor (MPF) were compared in parallel synchronized cultures of SV40-infected and uninfected CV-1 cells. The DNA replication/damage checkpoint kinase Chk1 was phosphorylated in both uninfected and SV40-infected cultures arrested at G(1)/S by mimosine, consistent with checkpoint activation. Following release of uninfected cultures from G(1)/S, Chk1 phosphorylation was lost even though Chk1 protein levels were retained. In contrast, G(1)/S-released SV40-infected cultures exhibited dephosphorylation of Chk1 in S phase, followed by an increase in Chk1 phosphorylation coinciding with entry of infected cells into >G(2). Inhibitors of Chk1, UCN-01 and caffeine, induced mitosis and abnormal nuclear condensation and increased the protein kinase activity of MPF in SV40-infected CV-1 cells. These results demonstrate that SV40 lytic infection triggers components of a DNA damage checkpoint pathway. In addition, chemical inhibition of Chk1 activity suggests that Chk1 contributes to the absence of mitosis during SV40 lytic infection.  相似文献   

16.
DNA (deoxyribonucleic acid) signals that induce the G2 checkpoint response were examined using proliferative secondary cultures of diploid human fibroblasts. Treatments that generated DNA double-strand breaks (DSBs) directly were effective inducers of checkpoint response, generally producing >80% inhibition of mitosis (G2 delay) and the kinase activity of M-phase-promoting factor within 2 h of treatment. Effective inducers of G2 checkpoint response included γ-irradiation and the cancer chemotherapeutic drugs, bleomycin and etoposide. Treatments that produced DNA single-strand breaks, directly or indirectly through nucleotide excision repair, were not effective inducers of G2 delay. Ineffective treatments included incubation with camptothecin, an inhibitor of topoisomerase I (topo I), and irradiation with sublethal fluences of UVC, followed by incubation with aphidicolin. Transient severe inhibition of DNA synthesis with aphidicolin did not affect mitosis substantially, suggesting that the replication arrest input to the G2 checkpoint required more than brief inhibition of DNA synthesis. In contrast, moderate camptothecin-induced inhibition of DNA synthesis was associated with a strong inhibition of mitosis that developed 4–12 h after drug treatment. This result suggested that G2 delay was not expressed until the cells that were in S-phase at the time of treatment with camptothecin proceeded into G2. DNA damage was not necessary for induction of mitotic delay. An inhibitor of topoisomerase II (topo II), ICRF-193, which inhibits chromatid decatenation in G2 cells without damaging DNA, induced a severe inhibition of mitosis and M-phase-promoting factor kinase activity. The results suggest that DNA double-strand breaks and insufficiency of chromatid decatenation effectively induce the G2 checkpoint response, but DNA single-strand breaks do not.  相似文献   

17.
Fusion of terminally differentiated chick erythrocytes (CE) with replicating quail myoblasts or established L6J1 rat myoblasts results in reactivation of DNA synthesis in the dormant CE nuclei and in suppression of DNA synthesis in the myoblast nuclei. The nuclei of primary quail myoblasts are more effectively inhibited than the nuclei of established rat myoblasts. Inhibition of DNA replication occurs not only by preventing G1 nuclei from entering S-phase but also by blocking nuclei in S-phase and by delaying nuclei in G2 from undergoing mitosis and starting a new DNA replication cycle. No inhibition of DNA synthesis could be observed when mouse erythrocytes, i.e., erythrocytes lacking nuclei, were fused with rat myoblasts to generate mouse-globin-containing L6J1 cybrids. — Reactivation of CE nuclei is associated with a loss of the tissuespecific H5 histone variant. Complete elimination of H5 histone, however, does not seem to be a necessary prerequisite for the initiation or completion of DNA replication in CE nuclei since H5 antigens are found on reactivated G1, S, and G2 nuclei.  相似文献   

18.
Human T-lymphotropic virus type 1 (HTLV-1) Tax exerts pleiotropic effects on multiple cellular regulatory processes to bring about NF-kappaB activation, aberrant cell cycle progression, and cell transformation. Here we report that Tax stimulates cellular G(1)/S entry but blocks mitosis. Tax expression in naive cells transduced with a retroviral vector, pBabe-Tax, leads to a significant increase in the number of cells in the S phase, with an accompanying rise in the population of cells with a DNA content of 4N or more. In all cell types tested, including BHK-21, mouse NIH 3T3, and human diploid fibroblast WI-38, Tax causes an uncoupling of DNA synthesis from cell division, resulting in the formation of multinucleated giant cells and cells with decondensed, highly convoluted and lobulated nuclei that are reminiscent of the large lymphocytes with cleaved or cerebriform nuclei seen in HTLV-1-positive individuals. This contrasts with the Tax-transformed cell lines, PX1 (fibroblast) and MT4 (lymphocyte), which produce Tax at high levels, but without the accompanying late-stage cell cycle abnormalities. PX1 and MT4 may have been selected to harbor somatic mutations that allow a bypass of the Tax-induced block in mitosis.  相似文献   

19.
HeLa cells in S phase induce DNA synthesis in cycling cells, serum-deprived quiescent cells, and non-replicative senescent cells following cell fusion. In contrast normal human diploid fibroblasts (HDF) do not induce DNA synthesis in either quiescent cells or senescent cells. Instead, the replicative HDF nuclei are inhibited from entering S phase in heterokaryons formed with these two types of non-replicative cells. These differences in the inducing capabilities of normal HDF and HeLa cells raise the question whether normal HDF in S phase can induce DNA synthesis in cycling cells. This paper demonstrates that young HDF in S phase can induce DNA synthesis in cycling HDF. Thus, the hypothesis that initiation of DNA synthesis in cycling cells is positively controlled by inducer molecules appears to be valid for normal HDF as well as for transformed cells such as HeLa.  相似文献   

20.
Sodium butyrate and hydroxyurea, effective inhibitors of DNA synthesis in HeLa cells, cause these cells to produce increased levels of the ectopic glycopeptide hormones human chorionic gonadotropin (hCG), follicle stimulating hormone (FSH), and free alpha chains for these hormones. The objective of this study was an assessment of the role of modulation of cell cycle events in the action of these two chemical agents. A variety of experimental approaches was employed to obtain a clear view of the drugs' effects on cells located initially in all phases of the cell cycle. Cells in early G1, G2, or M phase at time of addition of either inhibitor were not arrested at early time points, but by 48 hours became collected at a location characteristic for each drug, near the G1-S phase boundary. Flow microfluorometry (FMF) and thymidine labeling index revealed that butyrate-treated cells arrested late in G1 phase very close to S phase, while hydroxyurea-blocked cells continued to early S phase. Both inhibitors prevented cells originally in S phase from reaching mitosis. S cells exposed to hydroxyurea were killed by 48 hours, but those growing in 5 mM butyrate progressed to the end of S or G2 phase where they became irreversibly arrested although not removed from the monolayer. Analysis of the cell cycle location and viability of each subpopulation resulting from 48 hour exposure to butyrate or hydroxyurea is important for the study of the function of each cellular subset. Treatment of HeLa cells with lower concentrations of butyrate (1 mM) resulted in slowed yet exponential growth. Fraction labeled mitosis (FLM) analysis shows that this is a result of prolongation of the G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号