首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Sollberger  M.  Erne  B.  Sansano  S.  Steck  A. J.  Schaeren-Wiemers  N. 《Brain Cell Biology》2002,31(1):5-14
The functional importance of the basal lamina in Schwann cell development and in adult peripheral nerve fibers is well known. We have demonstrated previously by confocal microscopy that IgM deposits are present on the basal lamina of myelinating Schwann cells of nerve biopsies from patients with an anti-MAG IgM neuropathy. Therefore, the basal lamina was postulated to represent an early target for the uptake of autoantibodies on the surface of myelinated nerve fibers. In this study, the preparation of cell- and myelin-free basal lamina from human peripheral nerves, using a detergent-dependent method is described and characterized by immunohistochemical and biochemical analysis. Using these methods we demonstrated that an enrichment of basal lamina components of Schwann cells with extraction of myelin could be achieved. Western blot analysis and immunohistochemical characterization showed that anti-MAG IgM antibodies did not recognize an epitope on the basal lamina of normal nerves. The established method will allow in situ investigations of basal lamina components from human peripheral nerves in health and in disease, e.g. peripheral neuropathies of infectious or inflammatory origin.  相似文献   

2.
The neural cell adhesion molecule (N-CAM) is a membrane glycoprotein involved in neuron-neuron and neuron-muscle adhesion. It can be synthesized in various forms by both nerve and muscle and it becomes concentrated at the motor endplate. Biochemical analysis of a frog muscle extract enriched in basal lamina revealed the presence of a polydisperse, polysialylated form of N-CAM with an average Mr of approximately 160,000 as determined by SDS-PAGE, which was converted to a form of 125,000 Mr by treatment with neuraminidase. To define further the role of N-CAM in neuromuscular junction organization, we studied the distribution of N-CAM in an in vivo preparation of frog basal lamina sheaths obtained by inducing the degeneration of both nerve and muscle fibers. Immunoreactive material could be readily detected by anti-N-CAM antibodies in such basal lamina sheaths. Ultrastructural analysis using immunogold techniques revealed N-CAM in close association with the basal lamina sheaths, present in dense accumulation at places that presumably correspond to synaptic regions. N-CAM epitopes were also associated with collagen fibrils in the extracellular matrix. The ability of anti-N-CAM antibodies to perturb nerve regeneration and reinnervation of the remaining basal lamina sheaths was then examined. In control animals, myelinating Schwann cells wrapped around the regenerated axon and reinnervation occurred only at the old synaptic areas; new contacts between nerve and basal lamina had a terminal Schwann cell capping the nerve terminal. In the presence of anti-N-CAM antibodies, three major abnormalities were observed in the regeneration and reinnervation processes: (a) regenerated axons in nerve trunks that had grown back into the old Schwann cell basal lamina were rarely associated with myelinating Schwann cell processes, (b) ectopic synapses were often present, and (c) many of the axon terminals lacked a terminal Schwann cell capping the nerve-basal lamina contact area. These results suggest that N-CAM may play an important role not only in the determination of synaptic areas but also in Schwann cell-axon interactions during nerve regeneration.  相似文献   

3.
Charcot-Marie-Tooth type (CMT1) disease or hereditary motor and sensory neuropathy type I (HMSNI) is an autosomal dominant peripheral neuropathy. In most CMT1 families, the disease cosegregates with a 1.5-Mb duplication on chromosome 17p11.2 (CMT1A). A few patients have been found with mutations in the peripheral myelin protein 22 (PMP-22) gene located in the CMT1A region. In other families mutations have been identified in the major peripheral myelin protein po gene localized on chromosome Iq21-q23 (CMT1B). We performed a rapid mutation screening of the PMP-22 and P0 genes in non-duplicated CMT1 patients by single-strand conformation polymorphism analysis followed by direct polymerase chain reaction sequencing of genomic DNA. Six new single base changes in the P0 gene were observed: two missense mutations in, respectively, exons 2 and 3, two nonsense mutations in exon 4, and two silent mutations or polymorphisms in, respectively, exons 3 and 6.  相似文献   

4.
The availability of tissue culture systems that allow the growth of nerve cells, Schwann cells, and fibroblasts separately or in various combinations now makes possible investigation of the role of cell interactions in the development of the peripheral nervous system. Using these systems it was earlier found that basal lamina is formed on the Schwann cell surface in cultures of sensory ganglion cells and Schwann cells without fibroblasts. It is here reported that the presence of nerve cells is required for the generation of basal lamina on the Schwann cell plasmalemma. Utilizing nerve cell-Schwann cell preparations devoid of fibroblasts, this was found in the following ways. (1) When nerve cells are removed from 3- to 5-week-old cultures, the basal lamina disappears from Schwann cells. (2) If nerve cells are added back to such Schwann cell populations, Schwann cell basal lamina reappears. (3) Removal of nerve cells from older (3–4 months) cultures does not lead to basal lamina loss; areas presumed not to have been coated with lamina before neurite degeneration remain so, suggesting that the lamina persists but is not reformed. (4) If basal lamina is removed with trypsin, it is reformed in neuron plus Schwann cell cultures but not in Schwann cell populations alone. Thus, the formation but not the persistence of Schwann cell basal lamina requires the presence of nerve cells.  相似文献   

5.
Fujimoto  E.  Mizoguchi  A.  Hanada  K.  Yahima  M.  Ide  C. 《Brain Cell Biology》1997,26(8):511-528
Schwann cell basal lamina tubes serve as attractive conduits for regeneration of peripheral nerve axons. In the present study, by using basal lamina tubes prepared by in situ freeze-treatment of rat saphenous nerve, the effects of exogenously applied basic fibroblast growth (bFGF) on peripheral nerve regeneration was examined 2 and 5 days after bFGF administration. Regenerating axons were observed by light and electron microscopy using PG9.5-immunohistochemistry for specific staining of axons. In addition, the localizations of bFGF and its receptor (FGF receptor-1) were examined by immunohistochemistry using anti-bFGF antibody and anti-FGF receptor-1 antibody, respectively. Regenerating axons extended further in the bFGF-administered segment than the bFGF-untreated control segment. Electron microscopy showed that regenerating axons grew out unaccompanied by Schwann cells. Findings concerning angiogenesis and Schwann cell migration were very similar between the bFGF treated and control nerve segment. bFGF-immunoreactivity was not detected in the control nerve segment. In contrast, bFGF-immunoreactivity was detected on the basal lamina tubes as well as on the plasmalemma of regenerating axons facing the basal lamina in the bFGF treated nerve segment up to 5 days after administration, suggesting that exogenous bFGF can be retained in the basal lamina for several days after administration. FGF receptor was detected on the plasma membrane of regenerating axons where they abutted the basal lamina. These results indicate that bFGF could promote the extension of early regenerating axons by directly influencing the axons, but not via Schwann cells or angiogenesis.  相似文献   

6.
The expression of mRNA for chemorepellent factors slit1 and slit2 in rat peripheral nerve regeneration was examined. The mRNA of slit2 increased when the continuity of basal lamina tubes was disrupted, not when it remained and the Slit2 protein was located in Schwann cells. These results suggest that disruption of the continuity of basal lamina tubes induces the expression of slit2 in Schwann cells during peripheral nerve regeneration.  相似文献   

7.
8.
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy. The predominant subtype, CMT-1A, accounts for more than 50% of all cases and is associated with an interstitial chromosomal duplication of 17p12 (refs. 2,3). We have generated a model of CMT-1A by introducing extra copies of the responsible disease gene, Pmp22 (encoding the peripheral myelin protein of 22 kDa), into transgenic rats. Here, we used this model to test whether progesterone, a regulator of the myelin genes Pmp22 and myelin protein zero (Mpz) in cultured Schwann cells, can modulate the progressive neuropathy caused by moderate overexpression of Pmp22. Male transgenic rats (n = 84) were randomly assigned into three treatment groups: progesterone, progesterone antagonist (onapristone) and placebo control. Daily administration of progesterone elevated the steady-state levels of Pmp22 and Mpz mRNA in the sciatic nerve, resulting in enhanced Schwann cell pathology and a more progressive clinical neuropathy. In contrast, administration of the selective progesterone receptor antagonist reduced overexpression of Pmp22 and improved the CMT phenotype, without obvious side effects, in wild-type or transgenic rats. Taken together, these data provide proof of principle that the progesterone receptor of myelin-forming Schwann cells is a promising pharmacological target for therapy of CMT-1A.  相似文献   

9.
Ng V  Zanazzi G  Timpl R  Talts JF  Salzer JL  Brennan PJ  Rambukkana A 《Cell》2000,103(3):511-524
The cell wall of pathogenic mycobacteria is abundant with complex glycolipids whose roles in disease pathogenesis are mostly unknown. Here, we provide evidence for the involvement of the specific trisaccharide unit of the phenolic glycolipid-1 (PGL-1) of Mycobacterium leprae in determining the bacterial predilection to the peripheral nerve. PGL-1 binds specifically to the native laminin-2 in the basal lamina of Schwann cell-axon units. This binding is mediated by the alpha(2LG1, alpha2LG4, and alpha2LG5 modules present in the naturally cleaved fragments of the peripheral nerve laminin alpha2 chain, and is inhibited by the synthetic terminal trisaccharide of PGL-1. PGL-1 is involved in the M. leprae invasion of Schwann cells through the basal lamina in a laminin-2-dependent pathway. The results indicate a novel role of a bacterial glycolipid in determining the nerve predilection of a human pathogen.  相似文献   

10.
Ultrastructural localization of laminin in rat sensory ganglia   总被引:2,自引:0,他引:2  
We adapted immunocytochemical methods for localization of laminin to examine its disposition in neural tissue at the ultrastructural level. In dorsal root ganglia, laminin was found in basal laminae of the satellite and Schwann cells ensheathing neuronal perikarya and nerve fibers, respectively, and around blood vessels. Within the basal lamina, the immunostain was found in the lamina lucida and lamina densa. Occasional immunostained coated pits were identified in satellite and Schwann cells, but virtually no intracellular label was seen even in freeze-thawed/detergent-permeabilized specimens. In the perineurium, only the basal lamina of the inward-facing surface of the inner-most cell layer was usually stained.  相似文献   

11.
Autosomal dominant Charcot-Marie-Tooth type-1A neuropathy (CMT1A) is a demyelinating peripheral nerve disorder that is commonly associated with a submicroscopic tandem DNA duplication of a 1.5-Mb region of 17p11.2p12 that contains the peripheral myelin gene PMP22. Clinical features of CMT1A include progressive distal muscle atrophy and weakness, foot and hand deformities, gait abnormalities, absent reflexes, and the completely penetrant electrophysiologic phenotype of symmetric reductions in motor nerve conduction velocities (NCVs). Molecular and fluorescence in situ hybridization (FISH) analyses were performed to determine the duplication status of the PMP22 gene in four patients with rare cytogenetic duplications of 17p. Neuropathologic features of CMT1A were seen in two of these four patients, in addition to the complex phenotype associated with 17p partial trisomy. Our findings show that the CMT1A phenotype of reduced NCV is specifically associated with PMP22 gene duplication, thus providing further support for the PMP22 gene dosage mechanism for CMT1A. Received: 3 May 1995 / Revised: 1 August 1995  相似文献   

12.
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of peripheral neuropathies with diverse genetic causes. In this study, we identified p.I43N mutation in PMP2 from a family exhibiting autosomal dominant demyelinating CMT neuropathy by whole exome sequencing and characterized the clinical features. The age at onset was the first to second decades and muscle atrophy started in the distal portion of the leg. Predominant fatty replacement in the anterior and lateral compartment was similar to that in CMT1A caused by PMP22 duplication. Sural nerve biopsy showed onion bulbs and degenerating fibers with various myelin abnormalities. The relevance of PMP2 mutation as a genetic cause of dominant CMT1 was assessed using transgenic mouse models. Transgenic mice expressing wild type or mutant (p.I43N) PMP2 exhibited abnormal motor function. Electrophysiological data revealed that both mice had reduced motor nerve conduction velocities (MNCV). Electron microscopy revealed that demyelinating fibers and internodal lengths were shortened in both transgenic mice. These data imply that overexpression of wild type as well as mutant PMP2 also causes the CMT1 phenotype, which has been documented in the PMP22. This report might expand the genetic and clinical features of CMT and a further mechanism study will enhance our understanding of PMP2-associated peripheral neuropathy.  相似文献   

13.
Schwann cell extracellular matrix molecules and their receptors   总被引:10,自引:0,他引:10  
The major cellular constituents of the mammalian peripheral nervous system are neurons (axons) and Schwann cells. During peripheral nerve development Schwann cells actively deposit extracellular matrix (ECM), comprised of basal lamina sheets that surround individual axon-Schwann cell units and collagen fibrils. These ECM structures are formed from a diverse set of macromolecules, consisting of glyco-proteins, collagens and proteoglycans. To interact with ECM, Schwann cells express a number of integrin and non-integrin cell surface receptors. The expression of many Schwann cell ECM proteins and their receptors is developmentally regulated and, in some cases, dependent on axonal contact. Schwann cell ECM acts as an organizer of peripheral nerve tissue and strongly influences Schwann cell adhesion, growth and differentiation and regulates axonal growth during development and regeneration.  相似文献   

14.
Fry EJ  Ho C  David S 《Neuron》2007,53(5):649-662
We report a role for Nogo receptors (NgRs) in macrophage efflux from sites of inflammation in peripheral nerve. Increasing numbers of macrophages in crushed rat sciatic nerves express NgR1 and NgR2 on the cell surface in the first week after injury. These macrophages show reduced binding to myelin and MAG in vitro, which is reversed by NgR siRNA knockdown and by inhibiting Rho-associated kinase. Fourteen days after sciatic nerve crush, regenerating nerves with newly synthesized myelin have fewer macrophages than cut/ligated nerves that lack axons and myelin. Almost all macrophages in the cut/ligated nerves lie within the Schwann cell basal lamina, while in the crushed regenerating nerves the majority migrate out. Furthermore, crush-injured nerves of NgR1- and MAG-deficient mice and Y-27632-treated rats show impaired macrophage efflux from Schwann cell basal lamina containing myelinated axons. These data have implications for the resolution of inflammation in peripheral nerve and CNS pathologies.  相似文献   

15.
We have recently described a novel cDNA, SR13 (Welcher, A. A., U. Suter, M. De Leon, G. J. Snipes, and E. M. Shooter. 1991. Proc. Natl. Acad. Sci. USA. 88:7195-7199), that is repressed after sciatic nerve crush injury and shows homology to both the growth arrest-specific mRNA, gas3 (Manfioletti, G., M. E. Ruaro, G. Del Sal, L. Philipson, and C. Schneider, 1990. Mol. Cell Biol. 10:2924-2930), and to the myelin protein, PASII (Kitamura, K., M. Suzuki, and K. Uyemura. 1976. Biochim. Biophys. Acta. 455:806-816). In this report, we show that the 22-kD SR13 protein is expressed in the compact portion of essentially all myelinated fibers in the peripheral nervous system. Although SR13 mRNA was found in the central nervous system, no corresponding SR13 protein could be detected by either immunoblot analysis or by immunohistochemistry. Northern and immunoblot analysis of SR13 mRNA and protein expression during development of the peripheral nervous system reveal a pattern similar to other myelin proteins. Furthermore, we demonstrate by in situ mRNA hybridization on tissue sections and on individual nerve fibers that SR13 mRNA is produced predominantly by Schwann cells. We conclude that the SR13 protein is apparently exclusively expressed in the peripheral nervous system where it is a major component of myelin. Thus, we propose the name Peripheral Myelin Protein-22 (PMP-22) for the proteins and cDNA previously designated PASII, SR13, and gas3.  相似文献   

16.
Innervation of the ultimobranchial glands in the chicken was investigated by immunohistochemistry, fluorescence microscopy and electron microscopy. The nerve fibers distributed in ultimobranchial glands were clearly visualized by immunoperoxidase staining with antiserum to neurofilament triplet proteins (200K-, 150K- and 68K-dalton) extracted from chicken peripheral nerves. The ultimobranchial glands received numerous nerve fibers originating from both the recurrent laryngeal nerves and direct vagal branches. The left and right sides of the ultimobranchial region were asymmetrical. The left ultimobranchial gland had intimate contact with the vagus nerve trunk, especially with the distal vagal ganglion, but was somewhat separated from the recurrent nerve. The right gland touched the recurrent nerve, the medial edge being frequently penetrated by the nerve, but the gland was separated from the vagal trunk. The left gland was innervated mainly by the branches from the distal vagal ganglion, whereas the right gland received mostly the branches from the recurrent nerve. The carotid body was located cranially near to the ultimobranchial gland. Large nerve bundles in the ultimobranchial gland ran toward and entered into the carotid body. By fluorescence microscopy, nerve fibers in ultimobranchial glands were observed associated with blood vessels. Only a few fluorescent nerve fibers were present in close proximity to C cell groups; the C cells of ultimobranchial glands may receive very few adrenergic sympathetic fibers. By electron microscopy, numerous axons ensheathed with Schwann cell cytoplasm were in close contact with the surfaces of C cells. In addition, naked axons regarded as axon terminals or "en passant" synapses came into direct contact with C cells. The morphology of these axon terminals and synaptic endings suggest that ultimobranchial C cells of chickens are supplied mainly with cholinergic efferent type fibers. In the region where large nerve bundles and complex ramifications of nerve fibers were present, Schwann cell perikarya investing the axons were closely juxtaposed with C cells; long cytoplasmic processes of Schwann cells encompassed large portions of the cell surface. All of these features suggest that C-cell activity, i.e., secretion of hormones and catecholamines, may be regulated by nerve stimuli.  相似文献   

17.
We show that Schwann cell-derived Desert hedgehog (Dhh) signals the formation of the connective tissue sheath around peripheral nerves. mRNAs for dhh and its receptor patched (ptc) are expressed in Schwann cells and perineural mesenchyme, respectively. In dhh-/- mice, epineurial collagen is reduced, while the perineurium is thin and disorganized, has patchy basal lamina, and fails to express connexin 43. Perineurial tight junctions are abnormal and allow the passage of proteins and neutrophils. In nerve fibroblasts, Dhh upregulates ptc and hedgehog-interacting protein (hip). These experiments reveal a novel developmental signaling pathway between glia and mesenchymal connective tissue and demonstrate its molecular identity in peripheral nerve. They also show that Schwann cell-derived signals can act as important regulators of nerve development.  相似文献   

18.
Reticular meshwork of the spleen in rats studied by electron microscopy   总被引:2,自引:0,他引:2  
The reticular meshwork of the rat spleen, which consists of both fibrous and cellular reticula, was investigated by transmission electron microscopy. The fibrous reticulum of the splenic pulp is composed of reticular fibers and basement membranes of the sinuses. These reticular fibers and basement membranes are continuous with each other. The reticular fibers are enfolded by reticular cells and are composed of two basic elements: 1) peripheral basal laminae of the reticular cells, and 2) central connective tissue spaces in which microfibrils, collagenous fibrils, elastic fibers, and unmyelinated adrenergic nerve fibers are present. The basement membranes of the sinuses are sandwiched between reticular cells and sinus endothelial cells and are composed of lamina-densalike material, microfibrils, collagenous fibrils, and elastic fibers. The presence of these connective tissue fibrous components indicates that there are connective tissue spaces in these basement membranes. The basement membrane is divided into three parts: the basal lamina of the reticular cell, the connective tissue space, and the basal lamina of the sinus endothelial cell. When the connective tissue space is very small or absent, the two basal laminae may fuse to form a single, thick basement membrane of the splenic sinus wall. The fibrous reticulum having these structures is responsible for support (collagenous fibrils) and rebounding (elastic fibers). The cells of the cellular reticulum--reticular cells and their cytoplasmic processes, which possess abundant contractile microfilaments, dense bodies, hemidesmosomes, basal laminae, and a well-developed, rough-surfaced endoplasmic reticulum, and Golgi complexes, which are characteristic of both fibroblasts and smooth muscle cells--are considered to be myofibroblasts. They may play roles in splenic contraction and in fibrogenesis of the fibrous reticulum. The contractile ability may be influenced by the unmyelinated adrenergic nerve fibers that pass through the reticular fibers. The three-dimensional reticular meshwork of the spleen consists of sustentacular fibrous reticulum and contractile myofibroblastic cellular reticulum. This meshwork not only supports the organ but also contributes to a contractile mechanism in circulation regulation, in collaboration with major contractile elements in the capsulo-trabecular system.  相似文献   

19.
The ultrastructure of substance P (SP)-containing axon terminals in the mucosa of the human urinary bladder was studied. Numerous SP-immunoreactive varicose nerve fibers were seen in the lamina propria, and most of them ran freely in the connective tissue. Many SP-immunoreactive nerve fibers were observed beneath the epithelium, and perivascular SP-immunoreactive nerves were also found in the submucosal layer. We observed a total of 305 SP-immunoreactive (IR) axon terminals, of which most (89.6%) were free nerve endings at the ultrastructural level; the rest of the SR-IR axon terminale were seen in the vicinity of the epithelium and blood vessels in the lamina propria. Varicose regions of SP-IR axon terminals contained large granular and small agranular synaptic vesicles, and most of them partially lacked a Schwann cell sheath. In some SP-IR varicosities, synaptic vesicles were concentrated in the region without any Schwann cell sheath. Long storage (for more than 1 month) of fixed-tissue pieces in sucrose before freezing has improved the ultrastructure of cryostat sections in pre-embedding immunohistochemistry. Trypsin digestion for the purpose of exposing antigenic sites was also employed before applying the first antiserum.  相似文献   

20.
神经退变和再生的构筑变化   总被引:4,自引:0,他引:4  
将夹伤的大鼠坐骨神经分离成单根纤维,观察98d内轴突和许旺细胞的构筑变化过程发现,损伤既使轴浆转运阻断、积累的细胞器退变,也使髓鞘板层,特别是斯兰氏切迹撕裂、变形或侵入轴突。轴突或髓鞘虽可各呈单一的退变,但以两者并存多见。伤后1d即出现富含微管的再生芽,它被增殖的许旺细胞突起及其基底膜包绕,并逐步发育成熟。根据再生的特征性构筑变化,提出了再生芽、无髓和有髓纤维、斯兰氏切迹、朗氏结与神经小束的初见、发育和成熟高峰期的时间顺序。无髓纤维的发育成熟早于有髓纤维。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号