首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.  相似文献   

2.
A series of new 9-substituted acridyl derivatives were synthesized and their in vitro antimalarial activity was evaluated against one chloroquine-sensitive strain (3D7) and three chloroquine-resistant strains [W2 (Indochina), Bre1 (Brazil) and FCR3 (Gambia)] of Plasmodium falciparum. Some compounds inhibit the growth of malarial parasite with IC50 相似文献   

3.
Antimalarial activity of ferrocenyl chalcones   总被引:1,自引:0,他引:1  
A series of ferrocenyl chalcones were synthesized and evaluated for in vitro antimalarial activity against a chloroquine-resistant strain of Plasmodium falciparum. The most active compounds were 1-(3-pyridyl)-3-ferrocenyl-2-propen-1-one (6) and 1-ferrocenyl-3-(4-nitrophenyl)-2-propen-1-one (28) with IC(50) of 4.5 and 5.1 microM, respectively. Differences in activity were not readily explained by the size and lipophilicity characteristics of these compounds.  相似文献   

4.
The isoquinuclidine (2-azabicyclo[2.2.2]octane) ring system may be viewed as a semi-rigid boat form of the piperidine ring and, when properly substituted, a scaffold for rigid analogs of biologically active ethanolamines and propanolamines. It is present in natural products (such as ibogaine and dioscorine) that display interesting pharmacological properties. In this study, we have expanded our continuing efforts to incorporate this ring system in numerous pharmacophores, by designing and synthesizing semirigid analogs of the antimalarial drug chloroquine. The analogs were tested in vitro against Plasmodium falciparum strains and Leishmania donovani promastigote cultures. Compounds 6 and 13 displayed potent antimalarial activity against both chloroquine-susceptible D6 and the -resistant W2 strains of P. falciparum. All analogs also demonstrated significant antileishmanial activity with compounds 6 and 13 again being the most potent. The fact that these compounds are active against both chloroquine-resistant and chloroquine-sensitive strains as well as leishmanial cells makes them promising candidates for drug development.  相似文献   

5.
The synthesis of a new class of Ugi adducts incorporating the 4-aminoquinoline moiety is described. The novel compounds are active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with the best compound showing an IC(50) value of 73 nM against a resistant K1 strain.  相似文献   

6.
Analogues of the antimalarial alkaloid nitidine have been prepared with high potency against both chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. Simple modifications, using an established synthetic route, resulted in an analogue with IC(50) below 5ng/mL against a chloroquine-sensitive strain of P. falciparum. N-Ethylethoxidine had IC(50) below 30ng/mL against both chloroquine-sensitive and chloroquine-resistant strains of P. falciparum.  相似文献   

7.
Using [G-3H]hypoxanthine uptake as a radioactive indicator for the growth of malarial parasites, we measured the antimalarial activity of artemisinin (Qinghaosu, QHS) against FCMSU1/Sudan strain (chloroquine-sensitive strain) and FCB K+ strain (chloroquine-resistant strain) of Plasmodium falciparum in continuous culture in vitro. The 50% inhibitory concentrations (IC50) for QHS against FCMSU1/Sudan strain and FCB K+ strain were 2.8 X 10(-8) and 3.0 X 10(-8) M, respectively. On the contrary, the response of the two strains to chloroquine was quite different. The IC50 for chloroquine against FCMSU1/Sudan strain was 5.6 ng/ml, whereas that for the FCB K+ strain was 65.6 ng/ml. Therefore, QHS did not appear to exhibit any cross-resistance with chloroquine. If [2,8-3H]adenosine was used as a radioactive precursor instead of [G-3H]hypoxanthine for the determination of antimalarial activity, virtually identical results were obtained. Therefore, [2,8-3H]adenosine can be used as an alternative to [G-3H]hypoxanthine for the assessment of antimalarial action.  相似文献   

8.
We report the synthesis, in vitro antiprotozoal (against Plasmodium and Leishmania), antimicrobial, cytotoxicity (Vero and MetHb-producing properties), and in vivo antimalarial activities of two series of 8-quinolinamines. N1-{4-[2-(tert-Butyl)-6-methoxy-8-quinolylamino]pentyl}-(2S/2R)-2-aminosubstitutedamides (21-33) and N1-[4-(4-ethyl-6-methoxy-5-pentyloxy-8-quinolylamino)pentyl]-(2S/2R)-2-aminosubstitutedamides (51-63) were synthesized in six steps from 6-methoxy-8-nitroquinoline and 4-methoxy-2-nitro-5-pentyloxyaniline, respectively. Several analogs displayed promising antimalarial activity in vitro against Plasmodium falciparum D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) clones with high selectivity indices versus mammalian cells. The most promising analogs (21-24) also displayed potent antimalarial activity in vivo in a Plasmodium berghei-infected mouse model. Most interestingly, many analogs exhibited promising in vitro antileishmanial activity against Leishmania donovani promastigotes, and antimicrobial activities against a panel of pathogenic bacteria and fungi. Several analogs, notably 21-24, 26-32, and 60, showed less MetHb formation compared to primaquine indicating the potential of these compounds in 8-quinolinamine-based antimalarial drug development.  相似文献   

9.
The design, synthesis, and antiplasmodial activity of antimalarial heterodimers based on the 1,4-bis(3-aminopropyl)piperazine linker is reported. In this series key structural elements derived from quinoline antimalarials were coupled to fragments capable of coordinating metal ions. Biological evaluation included determination of activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. Some of the novel compounds presented high activity in vitro against chloroquine-resistant strains, more potent than chloroquine and clotrimazole. Computational studies revealed that the activity is likely due to the ability of the compounds to assume a multisite iron coordinating geometry.  相似文献   

10.
Emergence and spread of multidrug resistant strains of Plasmodium falciparum has severely limited the antimalarial chemotherapeutic options. In order to overcome the obstacle, a set of new side-chain modified 4-aminoquinolines were synthesized and screened against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of P. falciparum. The key feature of the designed molecules is the use of methylpiperazine linked α, β3- and γ-amino acids to generate novel side chain modified 4-aminoquinoline analogues. Among the evaluated compounds, 20c and 30 were found more potent than CQ against K1 and displayed a four-fold and a three-fold higher activity respectively, with a good selectivity index (SI = 5846 and 11,350). All synthesized compounds had resistance index between 1.06 and >14.13 as against 47.2 for chloroquine. Biophysical studies suggested that this series of compounds act on heme polymerization target.  相似文献   

11.
Synthesis and bioevaluation of new diaryl ether hybridized quinoline derivatives as antiplasmodial, antibacterial and antifungal agents is reported. It was encouraging to discover that several compounds displayed 2–3 folds better efficacy than chloroquine in chloroquine-resistant K1 strain of Plasmodium falciparum. Further, a few members of the library displayed good antibacterial efficacy against gram positive strains of bacteria but none of the compounds displayed any significant antifungal activity.  相似文献   

12.
Bioassay-guided fractionation of the methanol extract of Momordica balsamina led to the isolation of two new cucurbitane-type triterpenoids, balsaminol F (1) and balsaminoside B (2), along with the known glycosylated cucurbitacins, cucurbita-5,24-diene-3β,23(R)-diol-7-O-β-D-glucopyranoside (3) and kuguaglycoside A (4). Compound 1 was acylated yielding two new triesters, triacetylbalsaminol F (5) and tribenzoylbalsaminol F (6). The structures were elucidated based on spectroscopic methods including 2D-NMR experiments (COSY, HMQC, HMBC and NOESY). Compounds 1-6, were evaluated for their antimalarial activity against the erythrocytic stages of the Plasmodium falciparum chloroquine-sensitive strain 3D7 and the chloroquine-resistant clone Dd2. Assessment of compounds (1-3 and 5, 6) activity against the liver stage of Plasmodium berghei was also performed, measuring the luminescence intensity in Huh-7 cells infected with a firefly luciferase-expressing P. berghei line, PbGFP-Luc(con). Active compounds were shown to inhibit the parasite's intracellular development rather than its ability to invade hepatic cells. Toxicity of compounds (1-3 and 5, 6) was assessed on the same cell line and on mouse primary hepatocytes through the fluorescence measurement of cell confluency. Furthermore, toxicity of compounds 1-6 towards human cells was also investigated in the MCF-7 breast cancer cell line, showing that they were not toxic or exhibited weak toxicity. In blood stages of P. falciparum, compounds 1-5 displayed antimalarial activity, revealing triacetylbalsaminol F (5) the highest antiplasmodial effects (IC(50) values: 0.4μM, 3D7; 0.2μM, Dd2). The highest antiplasmodial activity against the liver stages of P.berghei was also displayed by compound 5, with high inhibitory activity and no toxicity.  相似文献   

13.
Synthesis and evaluation of the activity of a new family of 1,4-bis(3-aminopropyl)piperazine derivatives against a chloroquine-resistant strain of Plasmodium falciparum, and as inhibitors of beta-hematin formation, are described. The highest antimalarial activities were obtained for compounds displaying the highest predicted vacuolar accumulation ratios and the best potencies as inhibitors of beta-hematin formation. The most potent compound displayed an activity 3-fold better than chloroquine for a comparable selectivity index upon MRC-5 cells. Therefore, in this series, the replacement of the 7-chloroquinoline group can constitute a strong rationale for further investigation.  相似文献   

14.
The synthesis and antimalarial properties of twelve new chlorinated 9H-xanthones, carrying a [2-(diethylamino)ethyl]amino group in position 1, are reported. All compounds were found to be active towards the chloroquine-susceptible and chloroquine-resistant strains 3D7 and Dd2, resp., of the protozoa parasite Plasmodium falciparum. Especially one compound, 6-chloro-1-{[2-(diethylamino)ethyl]amino}-9H-xanthen-9-one (1k), was found to exhibit significant in vitro activity (IC50 = 3.9 microM) towards the resistant Dd2 strain.  相似文献   

15.
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.  相似文献   

16.
Emergence of chloroquine-resistant Plasmodium falciparum strains necessitates discovery of novel antimalarial drugs, especially if the agents can be synthesized from commercially available, inexpensive precursors via short synthetic routes. While exploring structure-activity relationships, we found a gallium(III) complex, [(1,12-bis(2-hydroxy-5-methoxybenzyl)-1,5,8,12-tetraazadodecane)-gallium(III)](+) [Ga-5-Madd](+), 1, that possessed antimalarial efficacy. Like previously reported complexes, the crystal structure of 1 revealed gallium(III) in a symmetrical octahedral environment surrounded by four secondary amine nitrogen atoms in equatorial plane and two axial oxygen atoms. In contrast to a previously reported complex, [Ga-3-Madd](+), this novel metallo-antimalarial 1 possessed modest efficacy against chloroquine-sensitive HB3 Plasmodium lines. Thus, slight variation in the positions of methoxy functionalities on the aromatic rings of the organic scaffold dramatically altered specificity thereby suggesting a targeted (e.g., transporter- or receptor-mediated) rather than non-specific (e.g., pH or other gradient-mediated) mechanism of action for these agents.  相似文献   

17.
The in vitro antimalarial activity of the fungal metabolite gliotoxin (GTX) was evaluated, and its mechanism of action was studied. GTX showed plasmodicidal activity against both Plasmodium falciparum chloroquine-resistant strain K-1 and chloroquine-susceptible strain FCR-3. GTX cytotoxicity was significantly lower against a normal liver cell line (Chang Liver cells). The intracellular reduced glutathione level of parasitized and of normal red blood cells was not affected by GTX treatment. However, GTX decreased the chymotrypsin-like activity of parasite proteasomes in a time-dependent manner. The results of this study indicate that GTX possesses plasmodicidal activity and that this effect is due to inhibition of parasite proteasome activity, suggesting that GTX may constitute a useful antimalarial therapy.  相似文献   

18.
In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target.  相似文献   

19.
Anti-malarial activity of N6-modified purine analogues   总被引:1,自引:0,他引:1  
Plasmodium falciparum causes one of the deadliest forms of malaria and resistance to the currently available drugs makes it imperative to develop new, safe and potent drugs. Parasites such as P. falciparum are unable to synthesise purines de novo and to this end often have multiple purine uptake and salvage systems. With this in mind, we have designed and synthesised libraries of purine analogues as potential anti-malarial agents. Herein, we report three compounds with promising activity against the highly chloroquine-resistant VS1 P. falciparum namely: N(6)-hydroxyadenine (1c), 2-amino-N(6)-aminoadenosine (2b) and 2-amino-N(6)-amino-N(6)-methyladenosine (4b).  相似文献   

20.
Ferroquine (FQ, SSR97193) is currently the most advanced organo-metallic drug candidate and about to complete phase II clinical trials as a treatment for uncomplicated malaria. This ferrocene-containing compound is active against both chloroquine-susceptible and chloroquine-resistant Plasmodium falciparum and P. vivax strains and/or isolates. This article focuses on the discovery of FQ, its antimalarial activity, the hypothesis of its mode of action, the current absence of resistance in vitro and recent clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号