首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and SAR of 3-alkyl-4-aryl-4,5-dihydropyrazole-1-carboxamides 123 and 1-alkyl-5-aryl-4,5-dihydropyrazole-3-carboxamides 2427 as two novel cannabinoid CB1 receptor agonist classes were described. The target compounds elicited high affinities to the CB1 as well as the CB2 receptor and were found to act as CB1 receptor agonists. The key compound 19 elicited potent CB1 agonistic and CB2 inverse agonistic properties in vitro and showed in vivo activity in a rodent model for multiple sclerosis after oral administration.  相似文献   

2.
The pharmacokinetic based optimisation of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB1 receptor is disclosed. Compound 24 was found to be a highly potent and selective cannabinoid CB1 antagonist with high predicted human oral bioavailability.  相似文献   

3.
A novel series of cannabinoid ligands with a structurally unique tri-aryl core has been designed, synthesized and assayed. Receptor binding assays show that these compounds possess CB2 receptor sub-type selectivity with binding affinities ranging from 1.07 (±0.05) for 7 to 4.77 (±0.57) nM for 6. The selectivity of the compounds was enhanced 9–600-fold for the CB2 receptor over the CB1 receptor. The results of our present study identify a novel, highly selective cannabinoid scaffold with a non-classical core.  相似文献   

4.
Three 1-methoxy analogs of CP-47,497 (7, 8, and 19) have been synthesized and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. Although these compounds exhibit selectivity for the CB2 receptor none have significant affinity for either receptor. Modeling and receptor docking studies were carried out, which provide a rationalization for the weak affinities of these compounds for either receptor.  相似文献   

5.
Synthesis and pharmacological evaluation of a new series of cannabinoid receptor antagonists of indazole ether derivatives have been performed. Pharmacological evaluation includes radioligand binding assays with [3H]-CP55940 for CB1 and CB2 receptors and functional activity for cannabinoid receptors on isolated tissue. In addition, functional activity of the two synthetic cannabinoids antagonists 18 (PGN36) and 17 (PGN38) were carried out in the osteoblastic cell line MC3T3-E1 that is able to express CB2R upon osteogenic conditions. Both antagonists abolished the increase in collagen type I gene expression by the well-known inducer of bone activity, the HU308 agonist. The results of pharmacological tests have revealed that four of these derivatives behave as CB2R cannabinoid antagonists. In particular, the compounds 17 (PGN38) and 18 (PGN36) highlight as promising candidates as pharmacological tools.  相似文献   

6.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

7.
A few thienyl substituted pyrazole derivatives were synthesized to aid in the characterization of the cannabinoid receptor antagonist and also to serve as potentially useful antiobesity agent. Structural requirements for selective CB1 receptor antagonistic activity of 5-thienyl pyrazole derivatives included the structural similarity with potent, specific antagonist rimonabant 1. Compound 3 has been identified as a hair growth stimulator and an antiobesity agent in animal models.  相似文献   

8.
A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R = R2 = H, R1 = F) and 13 (R = COOCH3, R1 = R2 = H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.  相似文献   

9.
Novel thiazolotriazolopyrimidine derivatives (2333) designed as potential adenosine A2A receptor (A2AR) antagonists were synthesized. Molecular docking studies revealed that all compounds (2333) exhibited strong interaction with A2AR. The strong interaction of the compounds (2333) with A2AR in silico was confirmed by their high binding affinity with human A2AR stably expressed in HEK293 cells using radioligand-binding assay. The compounds 2426 demonstrated substantial binding affinity and selectivity for A2AR as compared to SCH58261, a standard A2AR antagonist. Decrease in A2AR-coupled release of endogenous cAMP in treated HEK293 cells demonstrated in vitro A2AR antagonist potential of the compounds 2426. Attenuation in haloperidol-induced motor impairments (catalepsy and akinesia) in Swiss albino male mice pre-treated with compounds 2426 further supports their role in the alleviation of PD symptoms.  相似文献   

10.
Three indole alkaloids, voacamine (1), 3,6-oxidovoacangine (2), and a new alkaloid, 5-hydroxy-3,6-oxidovoacangine (3), isolated from Voacanga africana were found to exhibit potent cannabinoid CB1 receptor antagonistic activity. This is the first example of CB1 antagonists derived from natural alkaloids.  相似文献   

11.
A novel series of Δ9-tetrahydrocannabinol (Δ9-THC) analogues were synthesized to determine their potential as cannabinoid receptor modulators. Chemistry focused on conversion of the phenol of Δ9-THC to other functionality through palladium catalyzed reactions with an intermediate triflate 2. Two analogues with sub 100 nM affinity for the CB1 and CB2 receptors were identified.  相似文献   

12.
The cannabinoid CB1/CB2 receptor subtype selectivity in the 1,2-diarylimidazole-4-carboxamide series was boosted by fine-tuning its 5-substitution pattern. The presence of the 5-methylsulfonyl group in 11 led to a greater than ~840-fold CB1/CB2 subtype selectivity. The compounds 10, 18 and 19 were found more active than rimonabant (1) in a CB1-mediated rodent hypotension model after oral administration. Our findings suggest a limited brain exposure of the P-glycoprotein substrates 11, 12 and 21.  相似文献   

13.
Replacement of the phenyl ring in our previous (morpholinomethyl)aniline carboxamide cannabinoid receptor ligands with a pyridine ring led to the discovery of a novel chemical series of CB2 ligands. Compound 3, that is, 2,2-dimethyl-N-(5-methyl-4-(morpholinomethyl)pyridin-2-yl)butanamide was identified as a potent and selective CB2 agonist exhibiting in vivo efficacy after oral administration in a rat model of neuropathic pain.  相似文献   

14.
The synthesis and structure–activity relationship studies of imidazoles are described. The target compounds 620 represent a novel chemotype of potent and CB2/CB1 selective cannabinoid CB2 receptor antagonists/inverse agonists with very high binding efficiencies in combination with favourable log P and calculated polar surface area values. Compound 12 exhibited the highest CB2 receptor affinity (Ki = 1.03 nM) in this series, as well as the highest CB2/CB1 subtype selectivity (>9708-fold).  相似文献   

15.
The design of bivalent ligands targeting G protein-coupled receptors (GPCRs) often leads to the development of new, highly selective and potent compounds. To date, no bivalent ligands for the human cannabinoid receptor type 2 (hCB2R) of the endocannabinoid system (ECS) are described. Therefore, two sets of homobivalent ligands containing as parent structure the hCB2R selective agonist 13a and coupled at different attachment positions were synthesized. Changes of the parent structure at these positions have a crucial effect on the potency and efficacy of the ligands. However, we discovered that bivalency has an influence on the effect at both cannabinoid receptors. Moreover, we found out that the spacer length and the attachment position altered the efficacy of the bivalent ligands at the receptors by turning agonists into antagonists and inverse agonists.  相似文献   

16.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

17.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

18.
Cannabinoids have been recently proposed as a new family of potential antitumor agents, and cannabinoid receptor 2 (CB2) is believed to be over-expressed in tumor cells. This study was designed to develop new radioligands for imaging of CB2 receptor in cancer using biomedical imaging technique positron emission tomography (PET). Carbon-11-labeled 2-oxoquinoline and 2-chloroquinoline derivatives, [11C]6ad and [11C]9ad, were prepared by O-[11C]methylation of their corresponding precursors using [11C]CH3OTf under basic conditions and isolated by a simplified solid-phase extraction (SPE) method in 40–50% radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 15–20 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 111–185 GBq/μmol. Radioligand binding assays indicated compounds 6f, 6b, and 9f display potent in vitro binding affinities with nanomolar Ki values and at least 100–2000-fold selectivity for CB2.  相似文献   

19.
Prostate cancer (PCa) is a major cause of cancer-related male death in worldwide. To develop of potential anti-prostate cancer agents, 22 kinds of 4-Amino-2H-benzo[h]chromen-2-one analogs were designed and synthesized as potent androgen receptor (AR) antagonist through rational drug modification leading to the discovery of a series of novel antiproliferative compounds. Analogs (3, 4, 5, 7, 8, 10, 11, 12, 16, 18, 21, 23, and 24) exhibited potent antagonistic potency against AR (inhibition >50%), and exhibited potent AR binding affinities as well as displayed the higher activities than finasteride toward LNCaP cells (AR-rich) versus PC-3 cells (AR-deficient). Moreover, the docking study suggested that the most potent antagonist 23 mainly bind to AR ligand binding pocket (LBP) site through Van der Waals’ force interactions. The structure-activity relationship (SAR) of these designed 4-Amino-2H-benzo[h]chromen-2-one analogs was rationally explored and discussed. Collectively, this work provides a potential lead compound for anticancer agent development related to prostate cancer therapy, and took a step forward towards the development of novel and improved AR antagonists.  相似文献   

20.
Two novel triaryl ligands 2 and 5 with potent in vitro binding affinities for the cannabinoid subtype-2 (CB2) receptor were labeled with a positron-emitting radioactive nuclide 11C. Radioligands [11C]2, [11C]5, and their analogs [11C]3 and [11C]4 were synthesized by O-[11C]methylation of their corresponding phenol precursors with [11C]CH3I. [11C]25 had relatively high uptakes (>1.2% injected dose/g tissue) in mouse brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号