首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Instability of mitochondrial DNA (mtDNA) has been associated with the initiation and development of cancer, but the specific role of mtDNA in the invasiveness and migration of cancer cells remains unclear. In this study, we investigated whether the chemokine CXCL12 causes intact mitochondria to redistribute in cancer cells and, in this way, to increase cell invasiveness and migration. A549 lung cancer cells with intact mtDNA (mtDNA+) and ρ0A549 cells depleted of mtDNA (mtDNA?) by long-term ethidium bromide incubation were examined for their responses to CXCL12 in a transwell migration assay and for mitochondrial distribution by fluorescence microscopy. Intact A549 cells showed significantly increased migration and increased polar distribution of mitochondria (asymmetry) in response to CXCL12. However, ρ0A549 cells showed no changes in mitochondrial distribution in response to CXCL12, and only a few ρ0A549 cells migrated across the transwell membrane after CXCL12 treatment. These results demonstrate that, in A549 lung cancer cells, intact mitochondrial DNA is necessary for mitochondrial redistribution and a chemotactic response to CXCL12.  相似文献   

2.
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.  相似文献   

3.
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.  相似文献   

4.
Li LJ  Zhong LF  Jiang LP  Geng CY  Zhu TZ  Xu YH  Wang Q  Qu Y  Shao J  Zou LJ 《Free radical research》2011,45(10):1232-1240
Elemene is a broad-spectrum antitumor agent. In the present study, lysosomal membrane permeabilization (LMP) was detected after short elemene emulsion--exposure (12 h) that preceded a decrease of the mitochondrial membrane potential and DNA damage (24 h) in A549 cells. At later time points (36 h) elemene emulsion caused the appearance of A549 cells with apoptotic features, including apoptotic morphology, phosphatidylserine exposure, and caspase-3 activation. A significant increase in protein expression for cathepsin D was also observed utilizing Western blot analysis after exposure to elemene emulsion for 12 h. The present study showed that elemene emulsion induced the increased levels of reactive oxygen species (ROS) and depletion of glutathione (GSH) in A549 cells. Cells treated with pepstatin A, an inhibitor for cathepsin D, showed a significant inhibition in DNA damage, mitochondrial membrane permeabilization, caspase-3 activation, and phosphatidylserine exposure. These results demonstrated that apoptosis induced by elemene emulsion in A549 cells is mediated in part through LMP and lysosomal protease cathepsin D.  相似文献   

5.
Asbestos causes pulmonary toxicity by mechanisms that in part involve reactive oxygen species (ROS). However, the precise source of ROS is unclear. We showed that asbestos induces alveolar epithelial cell (AEC) apoptosis by a mitochondrial-regulated death pathway. To determine whether mitochondrial-derived ROS are necessary for causing asbestos-induced AEC apoptosis, we utilized A549-rho(omicron) cells that lack mitochondrial DNA and a functional electron transport. As expected, antimycin, which induces an oxidative stress by blocking mitochondrial electron transport at complex III, increased dichlorofluoroscein (DCF) fluorescence in A549 cells but not in A549-rho(omicron) cells. Compared with A549 cells, rho(omicron) cells have less asbestos-induced ROS production, as assessed by DCF fluorescence, and reductions in total glutathione levels as well as less caspase-9 activation and apoptosis, as assessed by TdT-mediated dUTP nick end labeling staining and DNA fragmentation. A mitochondrial anion channel inhibitor that prevents ROS release from the mitochondria to the cytoplasm also blocked asbestos-induced A549 cell caspase-9 activation and apoptosis. Finally, a role for nonmitochondrial-derived ROS with exposure to high levels of asbestos (50 microg/cm(2)) was suggested by our findings that an iron chelator (phytic acid or deferoxamine) or a free radical scavenger (sodium benzoate) provided additional protection against asbestos-induced caspase-9 activation and DNA fragmentation in rho(omicron) cells. We conclude that asbestos fibers affect mitochondrial DNA and functional electron transport, resulting in mitochondrial-derived ROS production that in turn mediates AEC apoptosis. Nonmitochondrial-associated ROS may also contribute to AEC apoptosis, particularly with high levels of asbestos exposure.  相似文献   

6.
《Free radical research》2013,47(10):1232-1240
Abstract

Elemene is a broad-spectrum antitumor agent. In the present study, lysosomal membrane permeabilization (LMP) was detected after short elemene emulsion - exposure (12 h) that preceded a decrease of the mitochondrial membrane potential and DNA damage (24 h) in A549 cells. At later time points (36 h) elemene emulsion caused the appearance of A549 cells with apoptotic features, including apoptotic morphology, phosphatidylserine exposure, and caspase-3 activation. A significant increase in protein expression for cathepsin D was also observed utilizing Western blot analysis after exposure to elemene emulsion for 12 h. The present study showed that elemene emulsion induced the increased levels of reactive oxygen species (ROS) and depletion of glutathione (GSH) in A549 cells. Cells treated with pepstatin A, an inhibitor for cathepsin D, showed a significant inhibition in DNA damage, mitochondrial membrane permeabilization, caspase-3 activation, and phosphatidylserine exposure. These results demonstrated that apoptosis induced by elemene emulsion in A549 cells is mediated in part through LMP and lysosomal protease cathepsin D.  相似文献   

7.
Alkaline gel electrophoresis, pulsed field gel electrophoresis, and quantitative PCR analyses (QPCR) of the nuclear (nDNA) and mitochondrial (mtDNA) genomes were used to assess DNA integrity in the spermatozoa of three species exposed to oxidative stress. In human and murine spermatozoa, the mtDNA was significantly more susceptible to H2O2-mediated damage than nDNA. In both eutherian species, exposure to 250 microM H2O2 induced around 0.6 lesions/10 kb of mtDNA. The mtDNA of human spermatozoa was particularly vulnerable to oxidative stress; 0.25, 1, and 5 mM H2O2 inducing DNA damage equivalent to 0.62, 1.34, and 1.42 lesions/10 kb, respectively. Such results emphasize the diagnostic significance of mtDNA as a biomarker of oxidative stress in the male germ line. In contrast, no damage could be detected by QPCR in the nDNA of either eutherian species, on exposure to H2O2 at doses as high as 5 mM. However, electrophoretic analysis indicated that severe oxidative stress could induce detectable nDNA fragmentation in human, but not murine spermatozoa. The mtDNA of tammar wallaby spermatozoa was relatively resistant to oxidative stress, only exhibiting damage (0.6 lesions/10 kb DNA) on exposure to 5 mM H2O2. By contrast, the nDNA of wallaby spermatozoa was significantly more susceptible to this oxidant than the other species. Such vulnerability is consistent with the lack of disulfide cross-linking in marsupial sperm chromatin and suggests that chromatin condensation during epididymal maturation may be important in establishing the resistance of these cells to the genotoxic effects of reactive oxygen species.  相似文献   

8.
Recent studies indicate that caspase-2 is involved in the early stage of apoptosis before mitochondrial damage. Although the activation of caspase-2 has been shown to occur in a large protein complex, the mechanisms of caspase-2 activation remain unclear. Here we report a regulatory role of Bcl-2 on caspase-2 upstream of mitochondria. Stress stimuli, including ceramide and etoposide, caused caspase-2 activation, mitochondrial damage followed by downstream caspase-9 and -3 activation, and cell apoptosis in human lung epithelial cell line A549. When A549 cells were pretreated with the caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(-OMe)-Val-Ala-Asp(-OMe)-fluoromethyl ketone or transfected with caspase-2 short interfering RNA, both ceramide- and etoposide-induced mitochondrial damage and apoptosis were blocked. Overexpression of Bcl-2 prevented ceramide- and etoposide-induced caspase-2 activation and mitochondrial apoptosis. Furthermore, caspase-2 was activated when A549 cells were introduced with Bcl-2 short interfering RNA or were treated with Bcl-2 inhibitor, which provided direct evidence of a negative regulatory effect of Bcl-2 on caspase-2. Cell survival was observed when caspase-2 was inhibited in Bcl-2-silencing cells. Blockage of the mitochondrial permeability transition pore and caspase-9 demonstrated that Bcl-2-modulated caspase-2 activity occurred upstream of mitochondria. Further studies showed that Bcl-2 was dephosphorylated at serine 70 after ceramide and etoposide treatment. A protein phosphatase inhibitor, okadaic acid, rescued Bcl-2 dephosphorylation and blocked caspase-2 activation, mitochondrial damage, and cell death. Taken together, ceramide and etoposide induced mitochondria-mediated apoptosis by initiating caspase-2 activation, which was, at least in part, regulated by Bcl-2.  相似文献   

9.
Curcumin, a major pigment of turmeric, is a natural antioxidant possessing a variety of pharmacological activities and therapeutic properties. But its mechanisms are unknown. In our previous study, we found that a 2-h exposure to curcumin induced DNA damage to both the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA) in HepG2 cells and that mtDNA damage was more extensive than nDNA damage. Therefore, experiments were initiated to evaluate the role of mtDNA damage in curcumin-induced apoptosis. The results demonstrated that HepG2 cells challenged with curcumin for 1 h showed a transient elevation of the mitochondrial membrane potential (DeltaPsim), followed by cytochrome c release into the cytosol and disruption of DeltaPsim after 6 h exposure to curcumin. Apoptosis was detected by Hoechst 33342 and annexin V/PI assay after 10 h treatment. Interestingly, the expression of Bcl-2 remained unchanged. A resistance to apoptosis for the corresponding rho0 counterparts confirmed a critical dependency for mitochondria during the induction of apoptosis in HepG2 cells mediated by curcumin. The effects of PEG-SOD in protecting against curcumin-induced cytotoxicity suggest that curcumin-induced cytotoxicity is directly dependent on superoxide anion O2- production. These data suggest that mitochondrial hyperpolarization is a prerequisite for curcumin-induced apoptosis and that mtDNA damage is the initial event triggering a chain of events leading to apoptosis in HepG2 cells.  相似文献   

10.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   

11.
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.  相似文献   

12.
13.
G Barja  A Herrero 《FASEB journal》2000,14(2):312-318
DNA damage is considered of paramount importance in aging. Among causes of this damage, free radical attack, particularly from mitochondrial origin, is receiving special attention. If oxidative damage to DNA is involved in aging, long-lived animals (which age slowly) should show lower levels of markers of this kind of damage than short-lived ones. However, this possibility has not heretofore been investigated. In this study, steady-state levels of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) referred to deoxyguanosine (dG) were measured by high performance liquid chromatography (HPLC) in the mitochondrial (mtDNA) and nuclear (nDNA) DNA from the heart of eight and the brain of six mammalian species ranging in maximum life span (MLSP) from 3.5 to 46 years. Exactly the same digestion of DNA to deoxynucleosides and HPLC protocols was used for mtDNA and nDNA. Significantly higher (three- to ninefold) 8-oxodG/dG values were found in mtDNA than in nDNA in all the species studied in both tissues. 8-oxodG/dG in nDNA did not correlate with MLSP across species either in the heart (r=-0.68; P<0.06) or brain (r = 0.53; P<0.27). However, 8-oxodG/dG in mtDNA was inversely correlated with MLSP both in heart (r=-0.92; P<0.001) and brain (r=-0.88; P<0.016) tissues following the power function y = a(.)x(b), where y is 8-oxodG/dG and x is the MLSP. This agrees with the consistent observation that mitochondrial free radical generation is also lower in long-lived than in short-lived species. The results obtained agree with the notion that oxygen radicals of mitochondrial origin oxidatively damage mtDNA in a way related to the aging rate of each species.-Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.  相似文献   

14.
This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.  相似文献   

15.
Lee CS  Kim YJ  Han ES 《Life sciences》2007,80(19):1759-1767
The present study was designed to assess the preventive effect of licorice compounds glycyrrhizin and 18beta-glycyrrhetinic acid against mitochondrial damage and cell death in lung epithelial cells exposed to 3-morpholinosydnonime, a donor of nitric oxide and superoxide. Treatment of lung epithelial cells with 3-morpholinosydnonime resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH. Treatment of glycyrrhizin and 18beta-glycyrrhetinic acid attenuated the 3-morpholinosydnonime-induced mitochondrial damage, formation of reactive oxygen species and GSH depletion and revealed a maximal inhibitory effect at 10 and 1 muM, respectively; beyond these concentrations the inhibitory effect declined. Melatonin, carboxy-PTIO, rutin and uric acid reduced the 3-morpholinosydnonime-induced cell death. The results show that glycyrrhizin and 18beta-glycyrrhetinic acid seem to prevent the toxic effect of 3-morpholinosydnonime against lung epithelial cells by suppressing the mitochondrial permeability transition that leads to the release of cytochrome c and activation of caspase-3. The preventive effect may be ascribed to the inhibitory action on the formation of reactive oxygen species and depletion of GSH. The findings suggest that licorice compounds seem to prevent the nitrogen species-mediated lung cell damage.  相似文献   

16.
17.
Tremella mesenterica (TM) is a common food and folk medicine widely used in several Asian countries as a tonic for the lungs. In the present study, we compared the effects of extracellular polysaccharides (EPS), intracellular polysaccharides (IPS), and ethanol extract (EE) of Tremella mesenterica on the induction of apoptosis into human lung carcinoma A549 epithelial cells. The EE, but not the EPS or the IPS, almost completely inhibited the growth of A549 cells. The results of Annexin V-FITC/PI staining and flow cytometric analysis indicated that the percentage of Annexin V(+)/PI(-) cells in EE-treated cells increased to 32.8%. The results of further investigation showed a disruption of mitochondrial transmembrane potential (DeltaPsi(m)), the production of reactive oxygen species (ROS), and the activation of caspase-3 protein in EE-treated cells. These findings suggest that EE can decrease cell viability and induce apoptosis in A549 cell lines by activating a mitochondrial pathway.  相似文献   

18.
p38 mitogen-activated protein kinase is activated and involved in cleavage of caspase-3 during apoptosis induced by a number of stimuli. However, the signaling events triggered by p38 that result in caspase-3 activation are still unknown. In human leukemia cells, two reactive oxygen species, singlet oxygen and hydrogen peroxide (H(2)O(2)), selectively stimulated the phosphorylation of p38. Preincubation of cells with SB203580, a specific inhibitor of p38, dose dependently inhibited DNA fragmentation induced by singlet oxygen but not by H(2)O(2). Protection from apoptosis by SB203580 correlated with inhibition of caspase-3, and several events that are associated with caspase-3 activation, including Bid cleavage, decrease in mitochondrial transmembrane potential and release of cytochrome c from mitochondria, whereas caspase-8 cleavage was not affected by this inhibitor. In contrast, blockade of caspase-8 with Ile-Glu-Thr-Asp-fluoromethyl ketone is sufficient to prevent formation of DNA fragments and to inhibit all the above signaling events, with exception of p38 phosphorylation, in both singlet oxygen- and H(2)O(2)-treated cells. These data suggest that caspase-3 activation is regulated through redundant signaling pathways that involve p38 and caspase-8 acting upstream of Bid during singlet oxygen-induced apoptosis, whereas the activation of caspase-3 by H(2)O(2) is only governed by a caspase-8-mediated apoptotic pathway.  相似文献   

19.
20.
The interaction of a quercetin copper(II) complex with DNA was investigated using UV–vis spectra, fluorescence measurement, viscosity measurement, agarose gel electrophoresis, and thiobarbituric acid reactive substances assay. The results indicate that the quercetin copper(II) complex can promote the cleavage of plasmid DNA, producing single and double DNA strand breaks, and intercalate into the stacked base pairs of DNA. Moreover, the complex can induce oxidative DNA damage involving generation of reactive oxygen species such as H2O2 and Cu(I)OOH. In addition, the cytotoxicity experiments carried out with A549 cells confirmed its apoptosis-inducing activity. And we also demonstrate that the levels of survivin protein expression in A549 cells decreased, and that relative activity of caspase-3 increased significantly after treatment with the complex. So our results suggest that the antitumor mechanism of the quercetin copper(II) complex involves not only its oxidative DNA damage with generation of reactive oxygen species but also its specific interaction with DNA. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号