首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo tracking by near infrared fluorescence non-invasive live cell imaging of labelled transplanted cells, thus proving its utility for therapeutic applications.  相似文献   

2.
《Cytotherapy》2014,16(5):640-652
Background aimsMesenchymal stromal cells (MSCs) have remarkable clinical potential for cell-based therapy. Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) from umbilical cord share unique properties with both embryonic and adult stem cells. MSCs are found at low frequency in vivo, and their successful therapeutic application depends on rapid and efficient large-scale expansion in vitro. Non-muscle myosin II (NMII) has pivotal roles in different cellular activities, such as cell division, migration and differentiation. We performed this study to understand the role of NMII in proliferation and cell cycle progression in WJ-MSCs.MethodsWJ-MSCs were cultured in the presence of blebbistatin, and cell cycle analysis was performed using flow cytometry, proliferation kinetics, senescence assay and gene expression profile using polymerase chain reaction array.ResultsWhen cultured in the presence of blebbistatin, an inhibitor of NMII adenosine triphosphatase activity, WJ-MSCs exhibited dose-dependent reduction in proliferative potential along with increase in cell size and induction of early senescence. Inhibition of NMII activity also affected cell cycle progression in WJ-MSCs and led to an increase in the percentage of cells in G0/G1 phase with a corresponding reduction in the percentage of cells in G2/M phase. Blebbistatin-induced G0/G1 arrest of WJ-MSCs was further associated with up-regulation of cell cycle inhibitory genes CDKN1A, CDKN2A and CDKN2B and down-regulation of numerous genes related to progression through S and M phases of the cell cycle.ConclusionsOur study demonstrates that inhibition of NMII activity in WJ-MSCs leads to G0/G1 arrest and alteration in the expression levels of certain key cell cycle-related genes.  相似文献   

3.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

4.
Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco’s modified Eagle’s medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29+, CD44+, CD90+, CD34, CD45) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the discarded cell culture supernates from human ES culture system. Moreover, these findings can also apply for stem cell banking, regenerative medicine and pharmacological applications.  相似文献   

5.
Mesenchymal stromal/stem cells(MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche(cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.  相似文献   

6.
Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which are recruited to the tumor microenvironment (TME) and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.  相似文献   

7.
The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Although several stromal cells and molecular pathways have been identified, the microenvironment of the stem cell niche remains largely unclear. Recent evidence suggests that stem cells are localized in areas with low oxygen. We have hypothesized that hypoxia maintains the undifferentiated phenotype of stem/precursor cells. In this report, we demonstrate that hypoxia reversibly arrests preadipocytes in an undifferentiated state. Consistent with this observation, hypoxia maintains the expression of pref-1, a key stem/precursor cell gene that negatively regulates adipogenic differentiation. We further demonstrate that the hypoxia-inducible factor-1 (HIF-1) constitutes an important mechanism for the inhibition of adipogenic differentiation by hypoxia. Our findings suggest that hypoxia in the stem cell niche is critical for the maintenance of the undifferentiated stem or precursor cell phenotype.  相似文献   

8.
9.
Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as “gefitinib-resistant persisters” (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1–all genes involved in stemness–were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.  相似文献   

10.
11.
Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO2) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO2) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.  相似文献   

12.
Mesenchymal stem cells (MSCs) are a heterogeneous population of non-hematopoietic precursor cells predominantly found in the bone marrow. They have been recently reported to home towards the hypoxic tumor microenvironment in vivo. Interleukin-6 is a multifunctional cytokine normally involved in the regulation of the immune and inflammatory response. In addition to its normal function, IL-6 signaling has been implicated in tumorigenesis. Solid tumors develop hypoxia as a result of inadequate O2 supply. Interestingly, tumor types with increased levels of hypoxia are known to have increased resistance to chemotherapy as well as increased metastatic potential. Here, we present evidence that under hypoxic conditions (1.5% O2) breast cancer cells secrete high levels of IL-6, which serve to activate and attract MSCs. We now report that secreted IL-6 acts in a paracrine fashion on MSCs stimulating the activation of both Stat3 and MAPK signaling pathways to enhance migratory potential and cell survival. Inhibition of IL-6 signaling utilizing neutralizing antibodies leads to attenuation of MSC migration. Specifically, increased migration is dependent on IL-6 signaling through the IL-6 receptor. Collectively, our data demonstrate that hypoxic tumor cells specifically recruit MSCs, which through activation of signaling and survival pathways facilitate tumor progression.  相似文献   

13.
14.
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1alpha in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues.  相似文献   

15.
16.
There is a growing trend for researchers to use in vitro 3D models in cancer studies, as they can better recapitulate the complex in vivo situation. And the fact that the progression and development of tumor are closely associated to its stromal microenvironment has been increasingly recognized. The establishment of such tumor supportive niche is vital in understanding tumor progress and metastasis. The mesenchymal origin of many cells residing in the cancer niche provides the rationale to include MSCs in mimicking the niche in neuroblastoma. Here we co-encapsulate and co-culture NBCs and MSCs in a 3D in vitro model and investigate the morphology, growth kinetics and matrix remodeling in the reconstituted stromal environment. Results showed that the incorporation of MSCs in the model lead to accelerated growth of cancer cells as well as recapitulation of at least partially the tumor microenvironment in vivo. The current study therefore demonstrates the feasibility for the collagen microsphere to act as a 3D in vitro cancer model for various topics in cancer studies.  相似文献   

17.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.  相似文献   

18.

Background

Stem cell transplantation is a promising method for the treatment of chronic obstructive pulmonary disease (COPD), and mesenchymal stem cells (MSCs) have clinical potential for lung repair/regeneration. However, the rates of engraftment and differentiation are generally low following MSC therapy for lung injury. In previous studies, we constructed a pulmonary surfactant-associated protein A (SPA) suicide gene system, rAAV-SPA-TK, which induced apoptosis in alveolar epithelial type II (AT II) cells and vacated the AT II cell niche. We hypothesized that this system would increase the rates of MSC engraftment and repair in COPD rats.

Methods

The MSC engraftment rate and morphometric changes in lung tissue in vivo were investigated by in situ hybridization, hematoxylin and eosin staining, Masson’s trichrome staining, immunohistochemistry, and real-time PCR. The expression of hypoxia inducible factor (HIF-1α) and stromal cell-derived factor-1 (SDF-1), and relationship between HIF-1α and SDF-1 in a hypoxic cell model were analyzed by real-time PCR, western blotting, and enzyme-linked immunosorbent assay.

Results

rAAV-SPA-TK transfection increased the recruitment of MSCs but induced pulmonary fibrosis in COPD rats. HIF-1α and SDF-1 expression were enhanced after rAAV-SPA-TK transfection. Hypoxia increased the expression of HIF-1α and SDF-1 in the hypoxic cell model, and SDF-1 expression was augmented by HIF-1α under hypoxic conditions.

Conclusions

Vacant AT II cell niches increase the homing and recruitment of MSCs to the lung in COPD rats. MSCs play an important role in lung repair and promote collagen fiber deposition after induction of secondary damage in AT II cells by rAAV-SPA-TK, which involves HIF-1α and SDF-1 signaling.  相似文献   

19.
Mesenchymal stem cells (MSCs) show a decline in pluripotency and differentiation with increased cell culture passages in 2D cultures. The 2D monolayer culture fails to correctly imitate the architecture and microenvironments of in-vivo cell models. Alternatively, 3D culture may improve the simulations of in-vivo cell microenvironments with wide applications in cell culture and drug discovery. In the present study, we compared various 3D culturing techniques such as 3D micro-well (3D-S), hanging drop (HD), and ultra-low attachment (ULA) plate-based spheroid culture to study their effect on morphology, viability, pluripotency, cell surface markers, immunomodulatory factors, and differentiation capabilities of Wharton’s jelly-mesenchymal stem cells (WJ-MSCs). The cell morphology, viability, and senescence of 3D cultured WJ-MSCs were comparable to cells in 2D culture. The expression of pluripotency markers (OCT4, SOX2, and NANOG) was enhanced upto 2–8 fold in 3D cultured WJ-MSCs when compared to 2D culture. Moreover, the immunomodulatory factors (IDO, IL-10, LIF, ANG1, and VEGF) were significantly elevated in ULA based 3D cultured WJ-MSCs. Furthermore, significant enhancement in the differentiation potential of WJ-MSCs towards adipocyte (ADP and C/EBP-α), osteocyte (OPN and RUNX2), and definitive endodermal (SOX17, FOXA2, and CXCR4) lineages in 3D culture conditions were observed. Additionally, the osteogenic and adipogenic differentiation potential of WJ-MSCs over the time points 7 days, 14 days, and 28 days was also significantly increased in 3D culture groups. Our study demonstrates that stemness properties of WJ-MSCs were significantly enhanced in 3D cultures and ULA-based culture outperformed other methods with high pluripotency gene expression and enhanced differentiation potential. This study indicates the efficacy of 3D cultures to bridge the gap between 2D cell culture and animal models in regenerative medicine.  相似文献   

20.

Background

Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to self-renew and migrate to sites of pathology. In vivo tracking of MSCs provides insights into both, the underlying mechanisms of MSC transformation and their potential as gene delivery vehicles. The aim of our study was to assess the ability of superparamagnetic iron oxide nanoparticles (SPIONs)-labeled Wharton’s Jelly of the human umbilical cord-derived MSCs (WJ-MSCs) to carry the green fluorescent protein (GFP) gene to cutaneous injury sites in a murine model.

Methods

WJ-MSCs were isolated from a fresh umbilical cord and were genetically transformed to carry the GFP gene using lentiviral vectors with magnetically labeled SPIONs. The SPIONs/GFP-positive WJ-MSCs expressed multipotent cell markers and demonstrated the potential for osteogenic and adipogenic differentiation. Fifteen skin-injured mice were divided into three groups. Group I was treated with WJ-MSCs, group II with SPIONs/GFP-positive WJ-MSCs, and group III with SPIONs/GFP-positive WJ-MSCs exposed to an external magnetic field (EMF). Magnetic resonance imaging and optical molecular imaging were performed, and images were acquired 1, 2, and 7 days after cell injection.

Results

The results showed that GFP could be intensively detected around the wound in vivo 24 h after the cells were injected. Furthermore, we observed an accumulation of WJ-MSCs at the wound site, and EMF exposure increased the speed of cell transport. In conclusion, our study demonstrated that SPIONs/GFP function as cellular probes for monitoring in vivo migration and homing of WJ-MSCs. Moreover, exposure to an EMF can increase the transportation efficiency of SPIONs-labeled WJ-MSCs in vivo.

Conclusions

Our findings could lead to the development of a gene carrier system for the treatment of diseases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号