首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background and Aims

Intraspecific variation in flooding tolerance is the basic pre-condition for adaptive flooding tolerance to evolve, and flooding-induced shoot elongation is an important trait that enables plants to survive shallow, prolonged flooding. Here an investigation was conducted to determine to what extent variation in flooding-induced leaf elongation exists among and within populations of the wetland species Rumex palustris, and whether the magnitude of elongation can be linked to habitat characteristics.

Methods

Offspring of eight genotypes collected in each of 12 populations from different sites (ranging from river mudflats with dynamic flooding regimes to areas with stagnant water) were submerged, and petioles, laminas and roots were harvested separately to measure traits related to elongation and plant growth.

Key Results

We found strong elongation of petioles upon submergence, and both among- and within-population variation in this trait, not only in final length, but also in the timing of the elongation response. However, the variation in elongation responses could not be linked to habitat type.

Conclusions

Spatio-temporal variation in the duration and depth of flooding in combination with a presumably weak selection against flooding-induced elongation may have contributed to the maintenance of large genetic variation in flooding-related traits among and within populations.  相似文献   

2.
Yang D  Li G  Sun S 《Annals of botany》2008,102(4):623-629

Background and Aims

Trade-offs are fundamental to life-history theory, and the leaf size vs. number trade-off has recently been suggested to be of importance to our understanding leaf size evolution. The purpose of the present study was to test whether the isometric, negative relationship between leaf size and number found by Kleiman and Aarssen is conserved between plant functional types and between habitats.

Methods

Leaf mass, area and number, and stem mass and volume of current-year shoots were measured for 107 temperate broadleaved woody species at two altitudes on Gongga Mountain, south-west China. The scaling relationships of leaf size (leaf area and mass) vs. (mass- and volume-based) leafing intensity were analysed in relation to leaf habit, leaf form and habitat type. Trait relationships were determined with both a standardized major axis method and a phylogenetically independent comparative method.

Key Results

Significant negative, isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. In particular, about 99 % of the variation in leaf mass across species could be accounted for by proportional variation in mass-based leafing intensity. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, evergreen species had a lower y-intercept in the scaling relationships of leaf area vs. leafing intensity than deciduous species. This indicated that leaf area was smaller in the evergreen species at a given leafing intensity than in the deciduous species. The compound-leaved deciduous species were observed usually to have significant upper shifts along the common slopes relative to the simple-leaved species, which suggested that the compound-leaved species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes.

Conclusions

The negative, isometric scaling relationship between leaf size and number is largely conserved in plants, while the leaf size vs. number trade-off can be mediated by leaf properties. The isometry of the leaf size vs. number relationship may simply result from a biomass allocation trade-off, although a twig size constraint may provide an alternative mechanism.Key words: Allometry, trade-off, leafing intensity, leaf size, leaf habit, leaf form  相似文献   

3.

Background and Aims

In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.

Methods

Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.

Key Results

In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence.

Conclusions

The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.  相似文献   

4.

Background and Aims

Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime''s CSR theory.

Methods

Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms.

Key Results

Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation.

Conclusions

Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.  相似文献   

5.

Background and Aims

Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

Methods

Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

Key Results

The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

Conclusions

The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.  相似文献   

6.

Background and Aims

Undisturbed forest habitat can be relatively impenetrable to invasive, non-native species. Orchids are not commonly regarded as invasive, but some species have become invasive and these generally depend on habitat disturbance. One of the most aggressive orchids is Oeceoclades maculata, a terrestrial species with remarkable ecological amplitude. Originally from tropical Africa, it is now widespread in the neotropics. By associating its local distribution with land-use history and habitat characteristics, it was determined whether O. maculata is dependent on habitat disturbance. It was also investigated whether this exotic orchid occupies the same habitat space as two sympatric native species.

Methods

Six 10 m × 500 m transects were censused in June 2007 on the 16-ha Luquillo Forest Dynamics Plot, located in the Luquillo Mountains, Puerto Rico. The plot had been mapped for historical land use, topography and soil type.

Key Results

Oeceoclades maculata was the most abundant of three orchid species surveyed and was found in all four historical cover classes. In cover class 3 (50–80 % forest cover in 1936), 192 of 343 plants were found at a density of 0·48 plants per 5 × 5 m subplot. Over 93 % of the 1200 subplots surveyed were composed of Zarzal or Cristal soil types, and O. maculata was nearly evenly distributed in both. The orchid was most common on relatively flat terrain. The distribution and abundance of two sympatric orchid species were negatively associated with that of the invasive species.

Conclusions

Oeceoclades maculata does penetrate ‘old growth’ forest but is most abundant in areas with moderate levels of past disturbance. Soil type makes little difference, but slope of terrain can be important. The negative association between O. maculata and native species may reflect differences in habitat requirements or a negative interaction perhaps at the mycorrhizal level.Key words: Oeceoclades maculata, Wullschlaegelia calcarata, Prescottia stachyodes, Orchidaceae, land-use history, tropical forest disturbance, terrestrial orchids, invasive species, Luquillo Experimental Forest, Puerto Rico, forest recovery, Caribbean  相似文献   

7.

Purpose

There is a high level of over-referral from primary eye care leading to significant numbers of people without ocular pathology (false positives) being referred to secondary eye care. The present study used a psychometric instrument to determine whether there is a psychological burden on patients due to referral to secondary eye care, and used Rasch analysis to convert the data from an ordinal to an interval scale.

Design

Cross sectional study.

Participants and Controls

322 participants and 80 control participants.

Methods

State (i.e. current) and trait (i.e. propensity to) anxiety were measured in a group of patients referred to a hospital eye department in the UK and in a control group who have had a sight test but were not referred. Response category analysis plus infit and outfit Rasch statistics and person separation indices were used to determine the usefulness of individual items and the response categories. Principal components analysis was used to determine dimensionality.

Main Outcome Measure

Levels of state and trait anxiety measured using the State-Trait Anxiety Inventory.

Results

State anxiety scores were significantly higher in the patients referred to secondary eye care than the controls (p<0.04), but similar for trait anxiety (p>0.1). Rasch analysis highlighted that the questionnaire results needed to be split into “anxiety-absent” and “anxiety-present” items for both state and trait anxiety, but both subscales showed the same profile of results between patients and controls.

Conclusions

State anxiety was shown to be higher in patients referred to secondary eye care than the controls, and at similar levels to people with moderate to high perceived susceptibility to breast cancer. This suggests that referral from primary to secondary eye care can result in a significant psychological burden on some patients.  相似文献   

8.

Background

Fluctuating asymmetry is a contentious indicator of stress in populations of animals and plants. Nevertheless, it is a measure of developmental noise, typically obtained by measuring asymmetry across an individual organism''s left-right axis of symmetry. These individual, signed asymmetries are symmetrically distributed around a mean of zero. Fluctuating asymmetry, however, has rarely been studied in microorganisms, and never in fungi.

Objective and Methods

We examined colony growth and random phenotypic variation of five soil microfungal species isolated from the opposing slopes of “Evolution Canyon,” Mount Carmel, Israel. This canyon provides an opportunity to study diverse taxa inhabiting a single microsite, under different kinds and intensities of abiotic and biotic stress. The south-facing “African” slope of “Evolution Canyon” is xeric, warm, and tropical. It is only 200 m, on average, from the north-facing “European” slope, which is mesic, cool, and temperate. Five fungal species inhabiting both the south-facing “African” slope, and the north-facing “European” slope of the canyon were grown under controlled laboratory conditions, where we measured the fluctuating radial asymmetry and sizes of their colonies.

Results

Different species displayed different amounts of radial asymmetry (and colony size). Moreover, there were highly significant slope by species interactions for size, and marginally significant ones for fluctuating asymmetry. There were no universal differences (i.e., across all species) in radial asymmetry and colony size between strains from “African” and “European” slopes, but colonies of Clonostachys rosea from the “African” slope were more asymmetric than those from the “European” slope.

Conclusions and Significance

Our study suggests that fluctuating radial asymmetry has potential as an indicator of random phenotypic variation and stress in soil microfungi. Interaction of slope and species for both growth rate and asymmetry of microfungi in a common environment is evidence of genetic differences between the “African” and “European” slopes of “Evolution Canyon.”  相似文献   

9.

Background and Aims

Although many hypotheses have been proposed to explain variation in leaf size, the mechanism underlying the variation remains not fully understood. To help understand leaf size variation, the cost/benefit of twig size was analysed, since, according to Corner''s rule, twig size is positively correlated with the size of appendages the twig bears.

Methods

An extensive survey of twig functional traits, including twig (current-year shoots including one stem and few leaves) and leaf size (individual leaf area and mass), was conducted for 234 species from four broadleaved forests. The scaling relationship between twig mass and leaf area was determined using standardized major axis regression and phylogenetic independent comparative analyses.

Key Results

Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1·0, independent of life form and habitat type. Thus, the leaf area ratio (the ratio of total leaf area to stem or twig mass) decreases with increasing twig size. Moreover, the leaf area ratio correlated negatively with individual leaf mass. The results of phylogenetic independent comparativeanalyses were consistent with the correlations. Based on the above results, a simple model for twig size optimization was constructed, from which it is postulated that large leaf size–twig size may be favoured when leaf photosynthetic capacity is high and/or when leaf life span and/or stem longevity are long. The model''s predictions are consistent with leaf size variation among habitats, in which leaf size tends to be small in poor habitats with a low primary productivity. The model also explains large variations in leaf size within habitats for which leaf longevity and stem longevity serve as important determinants.

Conclusions

The diminishing returns in the scaling of total leaf area with twig size can be explained in terms of a very simple model on twig size optimization.Key words: Allometry, leaf size, twig size, leaf area ratio, scaling relationship, broadleaved species  相似文献   

10.

Background

Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA.

Methodology and Principal Findings

A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy (“fusion”) models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species.

Conclusion and Significance

Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.  相似文献   

11.

Background

Developing effective conservation plans for multi-functional landscapes requires an accurate knowledge of the relative conservation value of different land-uses. A growing number of tropical ecologists have evaluated conservation value using the number (or proportion) of species that are unique to primary or old-growth forests. However, estimates of the conservation value of modified land-uses may be inflated by the presence of occasional species (e.g. singletons and doubletons) that may be unable to exist as viable populations in isolation.

Methodology/Principal Findings

We use a unique 15-taxa dataset from a mixed-use forest landscape in the Brazilian Amazon to test the hypothesis that the removal of occasional species from sample data can increase estimates of the value of primary forest for biodiversity conservation.

Conclusions/Significance

Estimates of conservation value that are based on the proportion of species that are unique to tropical primary or old-growth forests are highly sensitive to decisions researchers make regarding the inclusion or exclusion of occasional species. By removing singletons from modified forest samples, and considering only those species known to occur in primary forest, we almost double estimates of the conservation value of tropical primary forests.  相似文献   

12.

Background and Aims

Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species.

Methods

Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity.

Key Results

Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content).

Conclusions

Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.  相似文献   

13.
Milla R  Reich PB 《Annals of botany》2011,107(3):455-465

Background and Aims

Despite long-held interest, knowledge on why leaf size varies widely among species is still incomplete. This study was conducted to assess whether abiotic factors, phylogenetic histories and multi-trait interactions act together to shape leaf size.

Methods

Fifty-seven pairs of altitudinal vicariant species were selected in northern Spain, and leaf area and a number of functionally related leaf, shoot and whole plant traits were measured for each pair. Structural equation modelling helped unravel trait interactions affecting leaf size, and Mantel tests weighed the relative relevance of phylogeny, environment and trait interactions to explain leaf size reduction with altitude.

Key Results

Leaves of highland vicariants were generally smaller than those of lowlands. However, the extent of leaf size reduction with increasing altitude was widely variable among genera: from approx. 700 cm2 reduction (96 % in Polystichum) to approx. 30 cm2 increase (37 % in Sorbus). This was partially explained by shifts in leaf, shoot and whole plant traits (35–64 % of explained variance, depending on models), with size/number trade-offs more influential than shifts in leaf form and leaf economics. Shifts in traits were more important than phylogenetic distances or site-specific environmental variation in explaining the degree of leaf size reduction with altitude.

Conclusions

Ecological filters, constraints due to phylogenetic history (albeit modest in the study system), and phenotypic integration contribute jointly to shape single-trait evolution. Here, it was found that phenotypic change was far more important than shared ancestry to explaine leaf size differences of closely related species segregated along altitudes.  相似文献   

14.

Background

Many tropical forest tree species delay greening their leaves until full expansion. This strategy is thought to provide newly flushing leaves with protection against damage by herbivores by keeping young leaves devoid of nutritive value. Because young leaves suffer the greatest predation from invertebrate herbivores, delayed greening could prevent costly tissue loss. Many species that delay greening also produce anthocyanin pigments in their new leaves, giving them a reddish tint. These anthocyanins may be fungicidal, protect leaves against UV damage or make leaves cryptic to herbivores blind to the red part of the spectrum.

Methods

A comprehensive survey was undertaken of seedlings, saplings and mature trees in two diverse tropical forests: a rain forest in western Amazonia (Yasuní National Park, Ecuador) and a deciduous forest in Central America (Barro Colorado Island, Panamá). A test was made of whether individuals and species with delayed greening or red-coloured young leaves showed lower mortality or higher relative growth rates than species that did not.

Key results

At both Yasuní and Barro Colorado Island, species with delayed greening or red young leaves comprised significant proportions of the seedling and tree communities. At both sites, significantly lower mortality was found in seedlings and trees with delayed greening and red-coloured young leaves. While there was little effect of leaf colour on the production of new leaves of seedlings, diameter relative growth rates of small trees were lower in species with delayed greening and red-coloured young leaves than in species with regular green leaves, and this effect remained when the trade-off between mortality and growth was accounted for.

Conclusions

Herbivores exert strong selection pressure on seedlings for the expression of defence traits. A delayed greening or red-coloured young leaf strategy in seedlings appears to be associated with higher survival for a given growth rate, and may thus influence the species composition of later life stages.  相似文献   

15.

Background and Aims

Geographical variation in foliar and floral traits and their degree of coupling can provide relevant information on the relative importance of abiotic, biotic and even neutral factors acting at geographical scales as generators of evolutionary novelty. Geographical variation was studied in leaves and flowers of Embothrium coccineum, a species that grows along abrupt environmental gradients and exhibits contrasting pollinator assemblages in the southern Andes.

Methods

Five foliar and eight floral morphological characters were considered from 32 populations, and their patterns of variation and covariation were analysed within and among populations, together with their relationship with environmental variables, using both univariate and multivariate methods. The relationships between foliar and floral morphological variation and geographical distance between populations were compared with Mantel permutation tests.

Key Results

Leaf and flower traits were clearly uncoupled within populations and weakly associated among populations. Whereas geographical variation in foliar traits was mostly related to differences in precipitation associated with geographical longitude, variation in floral traits was not.

Conclusions

These patterns suggest that leaves and flowers responded to different evolutionary forces, environmental (i.e. rainfall) in the case of leaves, and biotic (i.e. pollinators) or genetic drift in the case of flowers. This study supports the view that character divergence at a geographical scale can be moulded by different factors acting in an independent fashion.Key words: Embothrium coccineum, Proteaceae, geographical variation, foliar morphology, floral morphology, uncoupling, selective forces, environmental conditions, pollinators, south Andes  相似文献   

16.

Background and Aims

In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion.

Methods

At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants.

Key Results

At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots.

Conclusions

The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed.Key words: anti-herbivore defences, dicots, herbivory, leaf folding, leaf rolling, leaf toughness, monocots, palms, tropical rain forest  相似文献   

17.

Background and Aims

Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding.

Methods

Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined.

Key Results

Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding.

Conclusions

The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems.Key words: Secondary roots, aerenchyma, genotypic variation, petiole length, plant performance, root porosity, selection, soil flooding, specific leaf area (SLA), Trifolium repens, white clover  相似文献   

18.

Background

Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach.

Methodology/Principal Findings

We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata.

Conclusions/Significance

The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies.  相似文献   

19.

Background and Aims

Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous.

Methods

To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations.

Key Results

Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples.

Conclusions

The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.  相似文献   

20.

Background and Aims

The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems.

Methods

A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations.

Key Results

It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am.

Conclusions

The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.Key words: Tropical dry forest, karst, leaf habit, hydraulic conductivity, cavitation resistance, leaf water-stress tolerance, wood density, leaf density, phylogenetic independent contrasts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号