首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ubiquitin ligase Cbl-b is an established regulator of T cell immune response thresholds. We recently showed that adoptive cell transfer (ACT) of cblb(-/-) CD8(+) T cells enhances dendritic cell (DC) immunization-mediated anti-tumor effects in immune-competent recipients. However, translation of cblb targeting to clinically applicable concepts requires that inhibition of cblb activity be transient and reversible. Here we provide experimental evidence that inhibition of cblb using chemically synthesized siRNA has such potential. Silencing cblb expression by ex vivo siRNA transfection of polyclonal CD8(+) T cells prior to ACT increased T cell tumor infiltration, significantly delayed tumor outgrowth, and increased survival rates of tumor-bearing mice. As shown by ex vivo recall assays, cblb silencing resulted in significant augmentation of intratumoral T cell cytokine response. ACT of cblb-silenced polyclonal CD8(+) T cells combined with DC-based tumor vaccines predominantly mediated anti-tumor immune responses, whereas no signs of autoimmunity could be detected. Importantly, CBLB silencing in human CD8(+) T cells mirrored the effects observed for cblb-silenced and cblb-deficient murine T cells. Our data validate the concept of enhanced anti-tumor immunity by repetitive ACT of ex vivo cblb siRNA-silenced hyper-reactive CD8(+) T cells as add-on adjuvant therapy to augment the efficacy of existing cancer immunotherapy regimens in clinical practice.  相似文献   

2.
TGF-β is a pleiotropic cytokine that predominantly exerts inhibitory functions in the immune system. Unexpectedly, the in vitro differentiation of both Th17 and Tc17 cells requires TGF-β. However, animals that are impaired in TGF-β signaling (TGF-βRIIDN mice) display multiorgan autoimmune disorders. Here we show that CD4(+) T cells from TGF-βRIIDN mice are resistant to Th17 cell differentiation and, paradoxically, that CD8(+) T cells from these animals spontaneously acquire an IL-17-producing phenotype. Neutralization of IL-17 or depletion of CD8(+) T cells dramatically inhibited inflammation in TGF-βRIIDN mice. Therefore, the absence of TGF-β triggers spontaneous differentiation of IL-17-producing CD8(+) T cells, suggesting that the in vivo and in vitro conditions that promote the differentiation of IL-17-producing CD8(+) T cells are distinct.  相似文献   

3.
Astragalus polysaccharides (APS), extracted from the root of Astragalus membranaceus, a traditional Chinese medicinal herb, have extensive pharmacological and strong immunomodulatory effects. In this study, the potential adjuvant effect of APS on humoral and cellular immune responses to hepatitis B subunit vaccine was investigated. Coadministration of APS with recombinant hepatitis B surface antigen significantly increased antigen-specific antibody production, T-cell proliferation and CTL (cytotoxic T lymphocyte) activity. Production of interferon-γ (IFN-γ), interleukin-2 (IL-2) and IL-4 in CD4(+) T cells and of IFN-γ in CD8(+) T cells were dramatically increased. Furthermore, expression of the genes PFP, GraB, Fas L and Fas were up-regulated; interestingly, expression of transforming growth factor β (TGF-β) and the frequency of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) were down-regulated. Expression of Toll-like receptor 4 (TLR4) was significantly increased by administration of APS. Together, these results suggest that APS is a potent adjuvant for the hepatitis B subunit vaccine and can enhance both humoral and cellular immune responses via activating the TLR4 signaling pathway and inhibit the expression of TGF-β and frequency of Treg cells.  相似文献   

4.
The E3 ubiquitin ligase Cbl-b regulates T cell activation thresholds and has been associated with protecting against type 1 diabetes, but its in vivo role in the process of self-tolerance has not been examined at the level of potentially autoaggressive CD4(+) T cells. In this study, we visualize the consequences of Cbl-b deficiency on self-tolerance to lysozyme Ag expressed in transgenic mice under control of the insulin promoter (insHEL). By tracing the fate of pancreatic islet-reactive CD4(+) T cells in prediabetic 3A9-TCR × insHEL double-transgenic mice, we find that Cbl-b deficiency contrasts with AIRE or IL-2 deficiency, because it does not affect thymic negative selection of islet-reactive CD4(+) cells or the numbers of islet-specific CD4(+) or CD4(+)Foxp3(+) T cells in the periphery, although it decreased differentiation of inducible regulatory T cells from TGF-β-treated 3A9-TCR cells in vitro. When removed from regulatory T cells and placed in culture, Cblb-deficient islet-reactive CD4(+) cells reveal a capacity to proliferate to HEL Ag that is repressed in wild-type cells. This latent failure of T cell anergy is, nevertheless, controlled in vivo in prediabetic mice so that islet-reactive CD4(+) cells in the spleen and the pancreatic lymph node of Cblb-deficient mice show no evidence of increased activation or proliferation in situ. Cblb deficiency subsequently precipitated diabetes in most TCR:insHEL animals by 15 wk of age. These results reveal a role for peripheral T cell anergy in organ-specific self-tolerance and illuminate the interplay between Cblb-dependent anergy and other mechanisms for preventing organ-specific autoimmunity.  相似文献   

5.
The ex vivo priming and expansion of human cytotoxic T lymphocytes (CTLs) has potential for use in immunotherapy applications for cancer and infectious diseases. To overcome the difficulty in obtaining sufficient numbers of CTLs, we have developed artificial antigen-presenting cells (aAPCs) expressing ligands for the T-cell receptor (TCR) and the CD28 and 4-1BB co-stimulatory surface molecules. These aAPCs reproducibly activate and rapidly expand polyclonal or antigen-specific CD8(+) T cells. The starting repertoire of CD8+ T cells was preserved during culture. Furthermore, apoptosis of cultured CD8(+) T cells was diminished by this approach. This approach may have important therapeutic implications for adoptive immunotherapy.  相似文献   

6.
Huang H  Liu Y  Xiang J 《Cellular immunology》2002,217(1-2):12-22
The lack of efficient T-cell infiltration of tumors is a major obstacle to successful adoptive T-cell therapy. We have previously shown that transplanted SP2/0 myeloma tumors engineered to express lymphotactin invariably induced tumor regress mediated by SP2/0 tumor-specific T cells. Herein, we further systemically characterize these activated T cells and investigate their therapeutic efficacy, either alone or with the chemokine interferon gamma (IFN-gamma)-inducible protein-10 (IP-10) gene therapy. Following stimulation with SP2/0 cells, these activated T cells were CD25(+)FasL(+) L-selectin(low), expressed CXCR3 receptor and were chemoattracted by IP-10 in vitro. They comprised 64% CD4(+) Th1 and 36% CD8(+) Tc1 cells, both of which expressed IFN-gamma, perforin, and TNF-alpha, but not IL-4. The activated T cells were strongly cytotoxic for SP2/0 tumor cells (79% specific killing; E:T ratio, 50), mainly via perforin-mediated pathway. Cell tracking using labeled T cells confirmed that these T cells infiltrated better into the IP-10-expressing tumors than non-IP-10-expressing ones. In vivo, combined intratumoral IP-10 gene transfer and adoptive T-cell immunotherapy for well-established SP2/0 tumors eradicated the tumors in 7 of the 8 mice. Control or IP-10 adenoviral treatments by themselves neither alter the lethal outcome for tumor-bearing mice nor did T-cell therapy by itself, although the latter two treatments did slow its time-frame. Taken together, our data provide solid evidence of a potent synergy between adoptive T-cell therapy and IP-10 gene transfer into tumor tissues, which culminated in the eradication of well-established tumor masses.  相似文献   

7.
The requirement for CD4(+) Th cells in the cross-priming of antitumor CTL is well accepted in tumor immunology. Here we report that the requirement for T cell help can be replaced by local production of GM-CSF at the vaccine site. Experiments using mice in which CD4(+) T cells were eliminated, either by Ab depletion or by gene knockout of the MHC class II beta-chain (MHC II KO), revealed that priming of therapeutic CD8(+) effector T cells following vaccination with a GM-CSF-transduced B16BL6-D5 tumor cell line occurred independently of CD4(+) T cell help. The adoptive transfer of CD8(+) effector T cells, but not CD4(+) effector T cells, led to complete regression of pulmonary metastases. Regression of pulmonary metastases did not require either host T cells or NK cells. Transfer of CD8(+) effector T cells alone could cure wild-type animals of systemic tumor; the majority of tumor-bearing mice survived long term after treatment (>100 days). In contrast, adoptive transfer of CD8(+) T cells to tumor-bearing MHC II KO mice improved survival, but eventually all MHC II KO mice succumbed to metastatic disease. WT mice cured by adoptive transfer of CD8(+) T cells were resistant to tumor challenge. Resistance was mediated by CD8(+) T cells in mice at 50 days, while both CD4(+) and CD8(+) T cells were important for protection in mice challenged 150 days following adoptive transfer. Thus, in this tumor model CD4(+) Th cells are not required for the priming phase of CD8(+) effector T cells; however, they are critical for both the complete elimination of tumor and the maintenance of a long term protective antitumor memory response in vivo.  相似文献   

8.
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.  相似文献   

9.
Dendritic cells (DC) are potent APCs for naive T cells in vivo. This is evident by inducing T cell responses through adoptive DC transfer. Priming specific CTL responses in vivo often requires "help". We study alternative sources of help in DC-dependent priming of MHC class I-restricted CTL. Priming an anti-viral CTL response in naive B6 mice by adoptive transfer of antigenic peptide-pulsed DC required CD4(+) T cell help. CTL priming was facilitated by providing MHC class II-dependent specific help. Furthermore, transfers of MHC class II-deficient pulsed DC into naive, normal hosts, or DC transfers into naive, CD4(+) T cell-depleted hosts primed CTL inefficiently. Pretreatment of DC with immune-stimulating oligodeoxynucleotides rendered them more efficient for CD4(+) T cell-independent priming of CTL. DC copresenting a K(b)-binding antigenic peptide and the CD1d-binding glycolipid alpha-galactosyl-ceramide efficiently primed CTL in a class II-independent way. To obtain NKT cell-dependent help in CTL priming, the same DC had to present both the peptide and the glycolipid. CTL priming by adoptive DC transfer was largely NK cell-dependent. The requirement for NK cells was only partially overcome by recruiting NKT cell help into DC-dependent CTL priming. NKT cells thus are potent helper cells for DC-dependent CTL priming.  相似文献   

10.
Ma JZ  Lim SN  Qin JS  Yang J  Enomoto N  Ruedl C  Ronchese F 《PloS one》2012,7(5):e37481
Cytotoxic T lymphocytes (CTL) provide protection against pathogens and tumors. In addition, experiments in mouse models have shown that CTL can also kill antigen-presenting dendritic cells (DC), reducing their ability to activate primary and secondary CD8(+) T cell responses. In contrast, the effects of CTL-mediated killing on CD4(+) T cell responses have not been fully investigated. Here we use adoptive transfer of TCR transgenic T cells and DC immunization to show that specific CTL significantly inhibited CD4(+) T cell proliferation induced by DC loaded with peptide or low concentrations of protein antigen. In contrast, CTL had little effect on CD4(+) T cell proliferation induced by DC loaded with high protein concentrations or expressing antigen endogenously, even if these DC were efficiently killed and failed to accumulate in the lymph node (LN). Residual CD4(+) T cell proliferation was due to the transfer of antigen from carrier DC to host APC, and predominantly involved skin DC populations. Importantly, the proliferating CD4(+) T cells also developed into IFN-γ producing memory cells, a property normally requiring direct presentation by activated DC. Thus, CTL-mediated DC killing can inhibit CD4(+) T cell proliferation, with the extent of inhibition being determined by the form and amount of antigen used to load DC. In the presence of high antigen concentrations, antigen transfer to host DC enables the generation of CD4(+) T cell responses regardless of DC killing, and suggests mechanisms whereby CD4(+) T cell responses can be amplified.  相似文献   

11.
Adoptive T cell tumor immunotherapy potentially consists of two protective components by the transferred effector cells, the immediate immune response and the subsequent development of memory T cells. The extent by which adoptively transferred CD8(+) CTL are destined to become memory T cells is ambiguous as most studies focus on the acute effects on tumor shortly following adoptive transfer. In this study we show that a substantial fraction of the input CTL develop into memory cells that reject a s.c. tumor challenge. The use of exogenous IL-2 or a combination of IL-2 and IL-4, but not solely IL-4, during the ex vivo culture for the CTL inoculation was necessary for efficient development of CD8(+) memory T cells. Thus, an important component of adoptive immunotherapy using CTL is the production of CD8(+) Ag-specific memory cells which is primarily favored by IL-2 receptor signaling during ex vivo generation of the effector CTL.  相似文献   

12.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

13.
Liu Z  Fan H  Wu Y  Chen B 《Cytotherapy》2005,7(4):353-362
BACKGROUND: DC are potent APC that can activate both CD4 and CD8 T cells in vitro and in vivo. Although the efficacy of DC-based cancer vaccines is currently being evaluated in clinical trials, the systemic immune suppression in cancer patients negatively impacts the clinical benefit of this therapeutic approach. Therefore, in this study we tested the feasibility and anti-tumor effect of adoptive immunotherapy using in vitro-activated CD62L(low) lymph node cells that were isolated from DC-vaccinated draining lymph nodes (VDLN). METHODS: DC were prepared from BM cells and loaded with tumor lysate for inoculating into naive mice. Subsequently, the VDLN were removed and CD62L(low) cells in the VDLN population isolated, expanded in vitro by 5-day culture with IL-2 and immobilized anti-CD3 stimulation, then injected into mice with established pulmonary tumors. Eighteen days after treatment, mice were killed in order to enumerate pulmonary tumor nodes. RESULTS: DC phagocytosed the tumor lysate efficiently and induced detectable T-cell responses and significant cell expansion in the draining lymph nodes. After induction of maturation by LPS treatment, DC expressed higher levels of CD40, CD86 and MHC class II molecules. When CD62L(low) VDLN cells that had been isolated and expanded in vitro were transferred into tumor-bearing mice, as few as 3 x 10(6) cells were able to cure metastatic pulmonary tumors in vivo. DISCUSSION: DC-based VDLN T cells are an important source of anti-tumor effector for adoptive immunotherapy. This study provides a novel and an effective protocol using T-cell adoptive immunotherapy for application in cancer patients; therefore, clinical trials based on this protocol may be warranted.  相似文献   

14.
The recognition that CD8(+) T-cell mediated Th1 immune responses were necessary to produce immunity to intracellular and transformed self pathogens led to intense interest in the delivery of nucleic acids, DNA, or RNA encoding candidate antigens, as vaccines. Antigen presenting cells (APC) encounter most protein and vaccine immunogens as extracellular proteins and, thus, present them on major histocompatibility complex (MHC) class II molecules leading to the activation of CD4(+) T cells. Protein antigens encoded by nucleic acids delivered to dendritic cell (DC) are produced inside the cell and, thus, can stimulate MHC class I mediated activation of CD8(+) T-cell immune responses. Unfortunately, DCs are not readily transfected with DNA (Akbari et al., 1999) resulting in the requirement for high concentrations of DNA and repeated immunizations to achieved immune responses. RNA, on the other hand, is readily taken up and expressed by DC, making it an alternative vaccine candidate. In this article, we will discuss immune responses developed, interactions between APC and RNA that activate and dictate DC activation, and preliminary studies using RNA in vivo and in vitro to develop protective immunity.  相似文献   

15.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

16.
Resistance to CD4+CD25+ regulatory T cells and TGF-beta in Cbl-b-/- mice   总被引:3,自引:0,他引:3  
Cbl-b(-/-) mice have signaling defects that result in CD28-independent T cell activation, increased IL-2 production, hyper-reactive T cells, and increased autoimmunity. Although the increased autoimmunity in these mice is believed to result from the hyper-reactive T cells, the mechanisms leading from T cell hyper-reactivity to autoimmunity remain unclear. Specifically, the function and interaction of CD4(+)CD25(+) regulatory T cells (T(reg)) and CD4(+)CD25(-) effector T cells (T(eff)) in Cbl-b(-/-) mice have not been examined. We now report that Cbl-b(-/-) CD4(+)CD25(+) T(reg) exhibit normal regulatory function in vitro. In contrast, the in vitro response of Cbl-b(-/-) CD4(+)CD25(-) T(eff) is abnormal, in that it is not inhibited by either Cbl-b(-/-) or wild-type T(reg). This resistance of Cbl-b(-/-) T(eff) to in vitro regulation is seen at the levels of both DNA synthesis and cell division. In addition to this resistance to CD4(+)CD25(+) T(reg), Cbl-b(-/-) T(eff) demonstrate in vitro resistance to inhibition by TGF-beta. This second form of resistance in Cbl-b(-/-) T(eff) is seen despite the expression of normal levels of type II TGF-beta receptors and normal levels of phosphorylated Smad3 after TGF-beta stimulation. Coupled with recent reports of resistance to T(reg) in T(eff) exposed to LPS-treated dendritic cells, our present findings suggest that resistance to regulation may be a relevant mechanism in both normal immune function and autoimmunity.  相似文献   

17.
Interest in the identities, properties, functions, and origins of local APC in CNS tissues is growing. We recently reported that dendritic cells (DC) distinct from microglia were present in quiescent retina and rapidly responded to injured neurons. In this study, the disease-promoting and regulatory contributions of these APC in experimental autoimmune uveoretinitis (EAU) were examined. Local delivery of purified, exogenous DC or monocytes from bone marrow substantially increased the incidence and severity of EAU induced by adoptive transfer of activated, autoreactive CD4 or CD8 T cells that was limited to the manipulated eye. In vitro assays of APC activity of DC from quiescent retina showed that they promoted generation of Foxp3(+) T cells and inhibited activation of naive T cells by splenic DC and Ag. Conversely, in vitro assays of DC purified from injured retina demonstrated an enhanced ability to activate T cells and reduced induction of Foxp3(+) T cells. These findings were supported by the observation that in situ activation of DC before adoptive transfer of β-galactosidase-specific T cells dramatically increased severity and incidence of EAU. Recruitment of T cells into retina by local delivery of Ag in vivo showed that quiescent retina promoted development of parenchymal Foxp3(+) T cells, but assays of preinjured retina did not. Together, these results demonstrated that local conditions in the retina determined APC function and affected the pathogenesis of EAU by both CD4 and CD8 T cells.  相似文献   

18.
BACKGROUND: The adoptive transfer of ex vivo-induced tumor-specific T-cell lines provides a promising approach for cancer immunotherapy. We have demonstrated previously the feasibility of inducing in vitro long-term anti-tumor cytotoxic T-cell (CTL) lines directed against different types of solid tumors derived from both autologous and allogeneic PBMC. We have now investigated the possibility of producing large amounts of autologous anti-tumor CTL, in compliance with good manufacturing practices, for in vivo use. METHODS: Four patients with advanced solid tumors (two sarcoma, one renal cell cancer and one ovarian cancer), who had received several lines of anticancer therapy, were enrolled. For anti-tumor CTL induction, patient-derived CD8-enriched PBMC were stimulated with DC pulsed with apoptotic autologous tumor cells (TC) as the source of tumor Ag. CTL were then restimulated in the presence of TC and expanded in an Ag-independent way. RESULTS: Large amounts of anti-tumor CTL (range 14-20 x 10(9)), which displayed high levels of cytotoxic activity against autologous TC, were obtained in all patients by means of two-three rounds of tumor-specific stimulation and two rounds of Ag-independent expansion, even when a very low number of viable TC was available. More than 90% of effector cells were CD3(+) CD8(+) T cells, while CD4(+) T lymphocytes and/or NK cells were less than 10%. DISCUSSION: Our results demonstrate the feasibility of obtaining large quantities of anti-tumor specific CTL suitable for adoptive immunotherapy approaches.  相似文献   

19.
Epstein-Barr virus (EBV)-specific T-cell lines generated by repeated stimulation with EBV-immortalized lymphoblastoid B-cell lines (LCL) have been successfully used to treat EBV-associated posttransplant lymphoproliferative disease (PTLD) in hematopoietic stem cell transplant recipients. However, PTLD in solid-organ transplant recipients and other EBV-associated malignancies respond less efficiently to this adoptive T-cell therapy. LCL-stimulated T-cell preparations are polyclonal and contain CD4(+) and CD8(+) T cells, but the composition varies greatly between lines. Because T-cell lines with higher CD4(+) T-cell proportions show improved clinical efficacy, we assessed which factors might compromise the expansion of this T-cell population. Here we show that spontaneous virus production by LCL and, hence, the presentation of viral antigens varies intra- and interindividually and is further impaired by acyclovir treatment of LCL. Moreover, the stimulation of T cells with LCL grown in medium supplemented with fetal calf serum (FCS) caused the expansion of FCS-reactive CD4(+) T cells, whereas human serum from EBV-seropositive donors diminished viral antigen presentation. To overcome these limitations, we used peripheral blood mononuclear cells pulsed with nontransforming virus-like particles as antigen-presenting cells. This strategy facilitated the specific and rapid expansion of EBV-specific CD4(+) T cells and, thus, might contribute to the development of standardized protocols for the generation of T-cell lines with improved clinical efficacy.  相似文献   

20.
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号