首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的:体外肺灌注技术(Ex vivo lung perfusion, EVLP)对于肺移植的实施意义重大,但成本昂贵。本文采用国产经济材料建立猪模型的EVLP系统,以探索保证系统性能的同时降低移植费用。方法:我们首先依据国产材料配置肺灌注液,并组装管道、连接仪器以建立EVLP系统;之后通过外科手段获得3头家猪的肺脏,并灌注肺灌注液,低温保存6小时;最后我们将肺脏连接到EVLP系统,通过血气分析和肺功能检查来评估肺脏随时间变化的状况。结果:离体并在低温保存6小时的猪肺脏,通过我们建立的相对经济的EVLP系统,可以在2小时内维持良好的氧合功能和肺生理指标:肺动脉压、气道峰压、平台压力、肺动脉氧气分压和二氧化碳分压和左心房的氧气分压和二氧化碳分压都保持稳定,同时肺脏具有正常的颜色和弹性,没有明显水肿和功能损害。结论:我们建立的EVLP系统可以有效地维护离体猪肺的生理功能,且降低了成本,从而为肺移植体外肺灌注技术的优化应用提供了研究基础。  相似文献   

2.
Rodent models have been described to investigate lung preservation and reperfusion injury but have significant disadvantages. In large animals single lung transplant studies are probably optimal but problems remain over the ability to rigorously separate the lungs for assessment while promoting medium to long-term animal survival for meaningful investigation. Our aim was to develop a novel and refined large animal model to assess reperfusion injury in the transplanted lung, overcoming the difficulties associated with existing models. Specifically, small animal models of lung transplantation usually have short perfusion times (often one hour) and include extracorporeal circuits while larger animal models often require the contralateral lung to be excluded after transplantation-an unphysiological situation under which to evaluate the graft. A porcine model of left lung allotransplantation was developed in which native and donor lungs are individually ventilated. Sampling catheters placed within the graft lung allowed specimen withdrawal without mixing of blood from the contralateral lung after reimplantation. The model permits a variety of clinical scenarios to be simulated with the native lung supporting the animal irrespective of function in the graft. This model has been used in over 60 transplant procedures with a postoperative survival time of 12 h being readily achieved. The mean operating time was 2.6 h. The mortality rate is 4% in our series. We have found the model to be reliable, reproducible and flexible. We propose this model as an adaptable investigation for evaluating lung reperfusion injury and preservation.  相似文献   

3.
Herein, we describe a novel technique for heterotopic abdominal heart-lung transplantation (HAHLT) in rats. The configuration of the transplant graft involves anastomosis of donor inferior vena cava (IVC) to recipient IVC, and donor ascending aorta (Ao) to recipient abdominal Ao. The right upper and middle lung lobes are preserved and function as conduits for blood flow from right heart to left heart.There are several advantages to using this technique, and it lends itself to a broad range of applications. Because the graft is transplanted in a configuration that allows for dyamic volume-loading, cardiac function may be directly assessed in vivo. The use of pressure-volume conductance catheters permits characterization of load-dependent and load-independent hemodynamic parameters. The graft may be converted to a loaded configuration by applying a clamp to the recipient’s infra-hepatic IVC. We describe modified surgical techniques for both donor and recipient operations, and an ideal myocardial protection strategy. Depending on the experimental aim, this model may be adapted for use in both acute and chronic studies of graft function, immunologic status, and variable ventricular loading conditions. The conducting airways to the transplanted lung are preserved, and allow for acute lung re-ventilation. This facilitates analysis of the effects of the mixed venous and arterial blood providing coronary perfusion to the graft.A limitation of this model is its technical complexity. There is a significant learning curve for new operators, who should ideally be mentored in the technique. A surgical training background is advantageous for those wishing to apply this model. Despite its complexity, we aim to present the model in a clear and easily applicable format. Because of the physiologic similarity of this model to orthotopic transplantation, and its broad range of study applications, the effort invested in learning the technique is likely to be worthwhile.  相似文献   

4.

Background

Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself.

Methods

We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting.

Results

XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host.

Conclusions

In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation.  相似文献   

5.

Background

Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs.

Methods

C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs.

Results

Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix.

Conclusions

These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
  相似文献   

6.
大鼠心脏移植急性排斥反应动物模型的建立   总被引:4,自引:0,他引:4  
目的为探索器官移植后急性排斥反应的一种快速可靠的诊断方法。方法先暴露和游离受体的吻合段血管,再获取供心以缩短移植心脏冷缺血时间;保留供者的心脏及右上肺,将其胸主动脉与受者的腹主动脉间断端侧吻合;开放血流时,先开放远心端再间断开放近心端,同时按摩心脏至心脏搏动规律、有力,其色泽恢复红润,右上肺亦充盈良好。结果A组(n=20)成功16只,动脉吻合口出血2只、心脏复跳失败1只、吻合口狭窄1只;B组(n=20)成功17只,2只死于吻合口出血,1只死于吻合口狭窄。A组手术成功率为80%,B组为85%(P>0.05)。结论(1)先暴露并游离好受体血管吻合段,再获取供心,可以缩短移植心冷缺血时间。(2)边灌注边获取的方法利于快速而又完整的获取供心。(3)在切取和植入的过程中一定要注意低温保护。(4)利用腹主动脉段进行移植,使手术方便易行。左心做功的大鼠腹部心脏移植模型简单、安全、实用,因其左心参与循环而使血流动力学更接近生理状态,是进行心脏移植及血流动力学研究的较理想模型。  相似文献   

7.
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia–reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using 31P and hyperpolarized 13C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized 13C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung’s energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung’s mitochondrial activity through an independent interaction with the electron transport chain complexes.  相似文献   

8.

Background

Sleeve anastomosis is the most common technique used to rearterialize orthotopic liver transplants (OLT). However, this technique has a number of disadvantages, including difficulty of performance of the technique visually unaided. We herein describe a novel rearterialized OLT model in the rat.

Materials and Methods

Forty-six male Sprague Dawley rats (300–400 g) were used as donors and recipients. Based on Kamada’s cuff technique, the new model involved performing a modified “sleeve” anastomosis between the celiac trunk of the donor and common hepatic artery of the recipient to reconstruct blood flow to the hepatic artery. An additional ten male Sprague Dawley rats underwent liver transplantation without artery reconstruction. Liver grafts were retrieved from the two groups and histological examination was performed following surgery.

Results

Total mean operating times were ~42 minutes for the donor liver extraction and 57 minutes for the recipient transplantation. Graft preparation took an additional 15 minutes and the time to fix the arterial bracket was ~3 minutes. During transplantation, the anhepatic phase lasted 18 ± 2.5 min and the artery reconstruction only required ~3 minutes. The patency rate was 94.44% and the 4-week survival rate was 90%. Histology indicated obvious fibrosis in the liver grafts without artery reconstruction, while normal histology was observed in the arterialized graft.

Conclusions

This new method allows for the surgical procedure to be performed visually unaided with good survival and patency rates and represents an alternative model investigating OLT in rats.  相似文献   

9.
A rat Proteus and Escherichia pyelonephritis model is described in which (i) reproducible chronic infections are achieved and (ii) the efficacy of clinically effective agents is reliably demonstrable with five rats in 17 days. It can serve as a primary screen in which one technician can evaluate 180 compounds per month with 900 rats. The manner of inoculation will inherently allow the study of and distinction between metabolism which is peculiar to infection and that which is characteristic of trauma and healing in general for the elucidation of chemical correlations with effective therapy.  相似文献   

10.
RATIONALE AND HYPOTHESIS: Previous studies evaluating the histoarchitecture of distal airspaces have been shown to be limited by the difficulty in adequately differentiating alveoli and alveolar ducts. This limitation has been specially noticed in studies addressing lung recruitment and in situations of diffuse alveolar damage (DAD), where generic nominations for distal airspaces had to be created, such as "peripheral airspaces" (PAS) and "large-volume gas-exchanging airspaces" (LVGEA). Elastic stains have been largely used to describe normal lung structures. Weigert's resorcin-fuchsin staining (WRF) demarcates the thickened free portions of the ductal septum facilitating its recognition. We hypothesized that this staining could help in differentiating alveoli from alveolar ducts in distorted lung parenchyma. MATERIAL AND METHODS: Samples of control lungs and of DAD lungs induced by mechanical ventilation (VILI) were stained with hematoxylin-eosin (HE) and with WRF. Using morphometry we assessed the volume proportion of alveoli, alveolar ducts and LVGEA in control and VILI lungs. RESULTS: WRF stained VILI lungs showed a significant decrease in the volume proportion of LVGEA and alveoli and a significant increase in the volume proportion of alveolar ducts when compared to HE stained samples. CONCLUSION: We conclude that WRF staining is useful to distinguish alveolar ducts from alveoli in a DAD model, and suggest that it should be routinely used when morphometric studies of lung parenchyma are performed.  相似文献   

11.
Mechanical ventilation with large tidal volumes can increase lung alveolar permeability and initiate inflammatory responses, termed ventilator-induced lung injury (VILI). VILI is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell death. But the underlying molecular mechanisms that regulate VILI remain unclear. The purpose of this study was to investigate the mechanisms that regulate pulmonary endothelial barrier in an animal model of VILI. These data suggest that SC5b-9, as the production of the complement activation, causes increase in rat pulmonary microvascular permeability by inducing activation of RhoA and subsequent phosphorylation of myosin light chain and contraction of endothelial cells, resulting in gap formation. In general, the complement-mediated increase in pulmonary microvascular permeability may participate in VILI.  相似文献   

12.
We developed a rat model of pulmonary arteriovenous malformations after cavopulmonary anastomosis. We sought to determine whether this model reproduces the angiographic and histologic features seen in the human condition. Eight Sprague-Dawley rats underwent a right superior cavopulmonary anastomosis with the use of microsurgical techniques. Between 2 and 13 mo, pulmonary angiography was performed, the animals were euthanized, and the lungs were removed. Microscopic sections of the lung were stained with an endothelial-specific antibody (von Willebrand factor). Microvessel density was determined by counting vessels staining positively for von Willebrand factor, and the shunted and nonshunted (control) lungs were compared for each animal. Pulmonary angiography revealed time-dependent development of arteriovenous malformations. Microvessel density demonstrated a time-dependent increase in the shunted lung compared with the control lung (simple linear regression of the ratio of the microvessel density of the shunted lung divided by the microvessel density of the control lung on time; R(2) = 0.79, P = 0.003). This animal model reproduces the same angiographic and microscopic features of pulmonary arteriovenous malformations that develop in humans after cavopulmonary anastomosis. This appears to be a valid model that may be used to further study etiologic mechanisms for this phenomenon.  相似文献   

13.
Although lung transplant remains the only option for patients suffering from end-stage lung failure, donor supply is insufficient to meet demand. Static cold preservation is the most common method to preserve lungs in transport to the recipient; however, this method does not improve lung quality and only allows for 8 h of storage. This results in lungs which become available for donation but cannot be used due to failure to meet physiologic criteria or an inability to store them for a sufficient time to find a suitable recipient. Therefore, lungs lost due to failure to meet physiological or compatibility criteria may be mitigated through preservation methods which improve lung function and storage durations. Ex situ lung perfusion (ESLP) is a recently developed method which allows for longer storage times and has been demonstrated to improve lung function such that rejected lungs can be accepted for donation. Although greater use of ESLP will help to improve donor lung utilization, the ability to cryopreserve lungs would allow for organ banking to better utilize donor lungs. However, lung cryopreservation research remains underrepresented in the literature despite its unique advantages for cryopreservation over other organs. Therefore, this review will discuss the current techniques for lung preservation, static cold preservation and ESLP, and provide a review of the cryopreservation challenges and advantages unique to lungs.  相似文献   

14.

Background

Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI.

Methods

Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios.

Results

Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation.

Conclusions

Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI.  相似文献   

15.
Ventilator-induced lung injury (VILI) due to high tidal volume (V(T)) is associated with increased levels of circulating factors that may contribute to, or be markers of, injury. This study investigated if exclusively lung-derived circulating factors produced during high V(T) ventilation can cause or worsen VILI. In isolated perfused mouse lungs, recirculation of perfusate worsened injury (compliance impairment, microvascular permeability, edema) induced by high V(T). Perfusate collected from lungs ventilated with high V(T) and used to perfuse lungs ventilated with low V(T) caused similar compliance impairment and permeability and caused a dose-dependent decrease in transepithelial electrical resistance (TER) across rat distal lung epithelial monolayers. Circulating soluble factors derived from the isolated lung thus contributed to VILI and had deleterious effects on the lung epithelial barrier. These data demonstrate transferability of an injury initially caused exclusively by mechanical ventilation and provides novel evidence for the biotrauma hypothesis in VILI. Mediators of the TER decrease were heat-sensitive, transferable via Folch extraction, and (following ultrafiltration, 3 kDa) comprised both smaller and larger molecules. Although several classes of candidate mediators, including protein cytokines (e.g., tumor necrosis factor-α, interleukin-6, macrophage inflammation protein-1α) and lipids (e.g., eicosanoids, ceramides, sphingolipids), have been implicated in VILI, only prostanoids accumulated in the perfusate in a pattern consistent with a pathogenic role, yet cyclooxygenase inhibition did not protect against injury. Although no single class of factor appears solely responsible for the decrease in barrier function, the current data implicate lipid-soluble protein-bound molecules as not just markers but pathogenic mediators in VILI.  相似文献   

16.
Human metapneumovirus (hMPV) is a newly described paramyxovirus that is an important cause of acute respiratory tract disease. We undertook to develop a small animal model of hMPV infection, pathogenesis, and protection. Hamsters, guinea pigs, cotton rats, and nine inbred strains of mice were inoculated intranasally with hMPV. The animals were sacrificed, and nasal and lung tissue virus yields were determined by plaque titration. None of the animals exhibited respiratory symptoms. The quantity of virus present in the nasal tissue ranged from 4.6 x 10(2) PFU/gram tissue (C3H mice) to greater than 10(5) PFU/gram (hamster). The amount of virus in the lungs was considerably less than in nasal tissue in each species tested, ranging from undetectable (<5 PFU/g; guinea pigs) to 1.8 x 10(5) PFU/gram (cotton rat). The peak virus titer in cotton rat lungs occurred on day 4 postinfection. hMPV-infected cotton rat lungs examined on day 4 postinfection exhibited histopathological changes consisting of peribronchial inflammatory infiltrates. Immunohistochemical staining detected virus only at the luminal surfaces of respiratory epithelial cells throughout the respiratory tract. hMPV-infected cotton rats mounted virus-neutralizing antibody responses and were partially protected against virus shedding and lung pathology on subsequent rechallenge with hMPV. Viral antigen was undetectable in the lungs on challenge of previously infected animals. This study demonstrates that the cotton rat is a permissive small animal model of hMPV infection that exhibits lung histopathology associated with infection and that primary infection protected animals against subsequent infection. This model will allow further in vivo studies of hMPV pathogenesis and evaluation of vaccine candidates.  相似文献   

17.
阻断子宫动脉建立FGR大鼠模型的研究   总被引:1,自引:0,他引:1  
目的通过暂时阻断妊娠期大鼠子宫血供的方法建立子宫缺血引起胎儿生长受限的动物模型。方法根据大鼠子宫动脉是卵巢动脉的一个分支的解剖特点,于孕鼠妊娠第15天时施行手术暂时阻断卵巢动脉并于第21天行剖宫产术,术后称量新生胎仔体重及胎盘、脑、心、肝、肺、肾等重要脏器重量,对比各组间新生胎仔的预后的不同,并对照研究阻断血供10、20、30及40 min对胎仔的不同影响。结果妊娠晚期阻断孕鼠卵巢动脉20min可成功构建胎儿生长受限模型,这种方法与阻断动脉血流30或40 min相比,手术时间短,技术要求不高,胎仔死亡率与对照组差异无显著性(P>0.05)。各实验组较对照组新生胎仔体重及胎盘、各重要脏器重量均明显降低(P<0.05)。结论通过阻断卵巢动脉从而阻断子宫动脉血流,成功建立缺血缺氧性FGR孕鼠模型。该模型重复性好,操作简便,并可成功设立同体对照,为进行FGR相关的产科理论研究提供了一个有利的技术平台。  相似文献   

18.
19.
目的建立大鼠Walker-256移植性肺癌模型,探讨应用Walker-256癌细胞建立大鼠移植性肺癌模型的可行性。方法 SD大鼠经尾静脉注射高、中、低三种不同细胞浓度的大鼠Walker-256细胞悬液,观察大鼠的生存时间、体重变化、移植性肺癌模型的成模率,其他脏器转移情况及病理形态学变化情况。结果注射癌细胞后14 d,模型组大鼠均出现体重下降、摄食减少等体征,与正常对照组比较体重明显降低(P〈0.05);注射癌细胞后21d,高浓度组大鼠开始出现死亡;高、中、低三组不同细胞浓度的移植性肺癌成模率分别为100%、80%、30%,模型组大鼠肝脏系数和肺脏系数均高于正常对照组。病理结果显示,模型组大鼠肺部可见明显的癌症病灶,而其他脏器未发现明显异常。结论注射高浓度Walker256癌细胞(3×105个细胞/只)能成功复制移植性肺癌模型,为移植性肺癌模型的建立和应用提供实验依据。  相似文献   

20.

Background

Mechanical ventilation (MV) with high tidal volumes (VT) can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI). The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI.

Methodology/Principal Findings

Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group) were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (VT) (6 mL/kg) or high VT (20 mL/kg). Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP-7), cyclin D1, vascular endothelial growth factor (VEGF), and axis inhibition protein 2 (AXIN2) protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-VT MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-VT MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels.

Conclusions/Significance

Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号