首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

3.
4.
Rahimi F  Hsu K  Endoh Y  Geczy CL 《The FEBS journal》2005,272(11):2811-2827
Growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-beta) regulate fibroblast function, differentiation and proliferation. S100A8 and S100A9 are members of the S100 family of Ca2+-binding proteins and are now accepted as markers of inflammation. They are expressed by keratinocytes and inflammatory cells in human/murine wounds and by appropriately activated macrophages, endothelial cells, epithelial cells and keratinocytes in vitro. In this study, regulation and expression of S100A8 and S100A9 were examined in fibroblasts. Endotoxin (LPS), interferon gamma (IFNgamma), tumour-necrosis factor (TNF) and TGF-beta did not induce the S100A8 gene in murine fibroblasts whereas FGF-2 induced mRNA maximally after 12 h. The FGF-2 response was strongly enhanced and prolonged by heparin. Interleukin-1beta (IL-1beta) alone, or in synergy with FGF-2/heparin strongly induced the gene in 3T3 fibroblasts. S100A9 mRNA was not induced under any condition. Induction of S100A8 in the absence of S100A9 was confirmed in primary fibroblasts. S100A8 mRNA induction by FGF-2 and IL-1beta was partially dependent on the mitogen-activated-protein-kinase pathway and dependent on new protein synthesis. FGF-2-responsive elements were distinct from the IL-1beta-responsive elements in the S100A8 gene promoter. FGF-2-/heparin-induced, but not IL-1beta-induced responses were significantly suppressed by TGF-beta, possibly mediated by decreased mRNA stability. S100A8 in activated fibroblasts was mainly intracytoplasmic. Rat dermal wounds contained numerous S100A8-positive fibroblast-like cells 2 and 4 days post injury; numbers declined by 7 days. Up-regulation of S100A8 by FGF-2/IL-1beta, down-regulation by TGF-beta, and its time-dependent expression in wound fibroblasts suggest a role in fibroblast differentiation at sites of inflammation and repair.  相似文献   

5.
The effect of T-5224, a selective inhibitor of c-Fos/activator protein (AP)-1, on lipopolysaccharide (LPS) induced liver injury was examined in mice. Administration of LPS (10?mg?kg?1, i.p.) markedly increased serum levels of tumor necrosis factor-alpha (TNFα), high mobility group box 1 (HMGB1), alanine aminotransferase/aspartate aminotransferase (ALT/AST), liver tissue levels of macrophage-inflammatory protein-1 alpha (MIP-1α) and monocyte chemoattractant protein-1 (MCP-1), as well as hepatic necrosis and inflammation, leading to 67?% lethality. Administration of T-5224 (300?mg?kg?1, p.o.) after intraperitoneal injection of LPS imparted appreciable protection against acute elevations in serum levels of TNFα, HMGB1, ALT/AST as well as in liver tissue levels of MIP-1α and MCP-1, and reduced the lethality (27?%). These data indicate that T-5224 ameliorates liver injury and improves survival through decreasing production of proinflammatory cytokines and chemokines in endotoxemic mice.  相似文献   

6.
Recently, proinflammatory activities had been described for S100A8 and S100A9, two proteins found at inflammatory sites and within the neutrophil cytoplasm. In this study, we investigated the role of these proteins in neutrophil migration in vivo in response to LPS. LPS was injected into the murine air pouch, which led to the release of S100A8, S100A9, and S100A8/A9 in the pouch exudates that preceded accumulation of neutrophils. Passive immunization against S100A8 and S100A9 led to a 52% inhibition of neutrophil migration in response to LPS at 3 h postinjection. Injection of LPS was also associated with an increase in peripheral blood neutrophils and the presence in serum of S100A9 and S100A8/A9. Intravenous injection of S100A8, S100A9, or S100A8/A9 augmented the number of circulating neutrophils and diminished the number of neutrophils in the bone marrow, demonstrating that S100A8 and S100A9 induced the mobilization of neutrophils from the bone marrow to the blood. Finally, passive immunization with anti-S100A9 inhibited the neutrophilia associated with LPS injection in the air pouch. These results suggest that S100A8 and S100A9 play a role in the inflammatory response to LPS by inducing the release of neutrophils from the bone marrow and directing their migration to the inflammatory site.  相似文献   

7.
TNF-alpha has numerous biological activities, including the induction of chemokine expression, and is involved in many gastric injuries. C-C chemokines [monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha] and C-X-C chemokines [MIP-2 and cytokine-induced neutrophil chemoattractant (CINC)-2alpha] mediate chemotaxis of monocytes and neutrophils, respectively. We examined the roles of TNF-alpha and dynamics of chemokine expression in gastric ulceration including ulcer recurrence and indomethacin-induced injury. Rats with healed chronic gastric ulcers received intraperitoneal TNF-alpha to induce ulcer recurrence. Some rats were given neutralizing antibodies against neutrophils or MCP-1 together with TNF-alpha. In a separate experiment, rats were orally administered 20 mg/kg indomethacin with or without pretreatment with pentoxifylline (an inhibitor of TNF-alpha synthesis) or anti-MCP-1 antibody. TNF-alpha (1 microg/kg) induced gastric ulcer recurrence after 48 h, which was completely prevented by anti-neutrophil antibody. TNF-alpha increased the number of macrophages and MCP-1 mRNA expression in scarred mucosa from 4 h, whereas it increased MPO activities (marker of neutrophil infiltration) and mRNA expression of MIP-2 and CINC-2alpha from 24 h. Anti-MCP-1 antibody inhibited leukocyte infiltration with reduction of the levels of C-X-C chemokines and prevented ulcer recurrence. Indomethacin treatment increased TNF-alpha/chemokine mRNA expression from 30 min and induced macroscopic erosions after 4 h. Pentoxifylline inhibited the indomethacin-induced gastric injury with reduction of neutrophil infiltration and expression of chemokine (MCP-1, MIP-2, and CINC-2alpha). Anti-MCP-1 antibody also inhibited the injury and these inflammatory responses but did not affect TNF-alpha mRNA expression. In conclusion, increased MCP-1 triggered by TNF-alpha may play a key role in gastric ulceration by regulating leukocyte recruitment and chemokine expression.  相似文献   

8.
To determine the role of CD14 in lipopolysaccharide (LPS)-induced release of chemokines, 16 humans were injected with LPS (4 ng/kg) preceded (-2 h) by intravenous IC14, an anti-human CD14 monoclonal antibody, or placebo. LPS elicited increases in interleukin (IL)-8 concentrations in plasma and in lysates of red blood cell (RBC), polymorphonuclear cell and mononuclear cell fractions, which were all reduced by IC14. LPS also induced rises in the plasma and RBC levels of monocyte chemoattractant protein (MCP)-1, which were diminished by IC14. Macrophage inflammatory protein (MIP)-1alpha and MIP-1beta, chemokines that in contrast to IL-8 and MCP-1 can not bind to the Duffy antigen receptor for chemokines on RBCs, were only detected in plasma. IC14 attenuated the LPS-induced release of MIP-1beta, but not of MIP-1alpha. IL-8 and MCP-1, but not MIP-1alpha and MIP-1b, circulate in RBC-associated form during endotoxemia. LPS-induced chemokine release is, in part, mediated by an interaction with CD14.  相似文献   

9.
We have demonstrated that interferon-inducible protein-10 (IP-10) is produced in hepatocytes surrounded by infiltrative mononuclear cells in chronic hepatitis. To clarify the role of IP-10 in hepatitis, we examined the chemoattractive activity of IP-10 on liver-infiltrating lymphocytes in experimental animal models of hepatitis. IP-10 was specifically induced in the livers of mice treated intravenously (i.v.) with Con A, while monocyte chemotactic protein-1 (MCP-1) showed a much lower level of induction and neither RANTES nor macrophage inflammatory protein-1alpha (MIP-1alpha) was detected. The liver-infiltrating lymphocytes in Con A-induced hepatitis were attracted only by IP-10, and not by other chemokines such as RANTES, MCP-1 and MIP-1alpha. The chemoattractive effect of IP-10 was dose-dependent and was neutralized by monoclonal antibodies to IP-10. The specific effect of IP-10 on liver-infiltrating lymphocytes was also seen on those obtained from rat livers with fulminant hepatitis induced by sequential treatment with killed Propionibacterium acnes (P. acnes) and LPS. Peripheral blood lymphocytes were slightly attracted by IP-10 as well as RANTES and MIP-1alpha, while hepatic resident lymphocytes were not. On the other hand, thioglycolate-elicited peritoneal macrophages did not respond to IP-10, although they did show a response to RANTES, MCP-1 and MIP-1alpha. These results indicated that IP-10 is a specific chemoattractant for T lymphocytes in the inflammatory liver tissues and may play a specific role in the development of hepatitis.  相似文献   

10.
Host-derived chemoattractant factors are suggested to play crucial roles in leukocyte recruitment elicited by inflammatory stimuli in vitro and in vivo. However, in the case of acute bacterial infections, pathogen-derived chemoattractant factors are also present, and it has not yet been clarified how cross-talk between chemoattractant receptors orchestrates diapedesis of leukocytes in this context of complex chemoattractant arrays. To investigate the role of chemokine (host-derived) and formyl peptide (pathogen-derived) chemoattractants in leukocyte extravasation in life-threatening infectious diseases, we used a mouse model of pneumococcal pneumonia. We found an increase in mRNA expression of eight chemokines (RANTES, macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, IP-10, monocyte chemoattractant protein (MCP)-1, T cell activation 3, and KC) within the lungs during the course of infection. KC and MIP-2 protein expression closely preceded pulmonary neutrophil recruitment, whereas MCP-1 protein production coincided more closely than MIP-1alpha with the kinetics of macrophage infiltration. In situ hybridization of MCP-1 mRNA suggested that MCP-1 expression started at peribronchovascular regions and expanded to alveoli-facing epithelial cells and infiltrated macrophages. Interestingly, administration of a neutralizing Ab against MCP-1, RANTES, or MIP-1alpha alone did not prevent macrophage infiltration into infected alveoli, whereas combination of the three Abs significantly reduced macrophage infiltration without affecting neutrophil recruitment. The use of an antagonist to N-formyl peptides, N-t-Boc-Phe-D-Leu-Phe-D-Leu-Phe, reduced both macrophages and neutrophils significantly. These data demonstrate that a complex chemokine network is activated in response to pulmonary pneumococcal infection, and also suggest an important role for fMLP receptor in monocyte/macrophage recruitment in that model.  相似文献   

11.
12.
13.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway regulates a wide range of inflammatory responses in many different cells. Inhibition of p38 MAPK before exposing a cell to stress stimuli has profound anti-inflammatory effects, but little is known about the effects of p38 MAPK inhibition on ongoing inflammatory responses. LPS-induced activation of p38 MAPK in human neutrophils was inhibited by poststimulation exposure to a p38 MAPK inhibitor (M39). Release of TNF-alpha, macrophage-inflammatory protein (MIP)-2 (MIP-1beta), and IL-8 by LPS-stimulated neutrophils was also reduced by poststimulation p38 MAPK inhibition. In contrast, release of monocyte chemoattractant protein-1 was found to be p38 MAPK independent. Ongoing chemotaxis toward IL-8 was eliminated by p38 MAPK inhibition, although the rate of nondirectional movement was not reduced. A murine model of acute LPS-induced lung inflammation was used to study the effect of p38 MAPK inhibition in ongoing pulmonary inflammation. Initial pulmonary cell responses occur within 4 h of stimulation in this model, so M39 was administered 4 h or 12 h after exposure of the animals to aerosolized LPS to avoid inhibition of cytokine release. Quantities of TNF-alpha, MIP-2, KC, or monocyte chemoattractant protein-1 recovered from bronchial alveolar lavage or serum were not changed. Recruitment of neutrophils, but not other leukocytes, to the airspaces was significantly reduced. Together, these data demonstrate the selective reduction of LPS-induced neutrophil recruitment to the airspaces, independent of suppression of other inflammatory responses. These findings support the feasibility of p38 MAPK inhibition as a selective intervention to reduce neutrophilic inflammation.  相似文献   

14.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

15.
The two calcium- and zinc-binding proteins, S100A9 and S100 A8, abundant in myeloid cells are considered to play important roles in both calcium signalling and zinc homeostasis. Polymorphonuclear neutrophils from S100A9 ko mice are also devoid of S100A8. Therefore, S100A9-deficient neutrophils were used as a model to study the role of the two S100 proteins in the neutrophils's calcium and zinc metabolism. Analysis of the intracellular zinc level upon pyrithione and (+/-)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexeneamide (NOR-1) treatment revealed no differences between S100A9-deficient and wildtype neutrophils. Similar, the calcium signals were not distinguishable from S100A9-deficient and wildtype neutrophils upon stimulation with platelet activating factor (PAF), thapsigargin or macrophage inflammatory protein 1 alpha (MIP-1 alpha), indicating despite their massive expression S100A8/A9 do neither serve as calcium nor as zinc buffering proteins in granulocytes. In contrast, stimulation with adenosine-5'-triphosphate (ATP) induces a significant stronger increase of the intracellular free calcium level in S100A9-deficient cells compared to wildtype cells. Moreover, the ATP-induced calcium signal was still different when the cells were incubated in calcium free buffer suggesting that pirinergic receptors of the P(2Y) class could be involved in this signalling pathway.  相似文献   

16.

Objective

The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity.

Methods

In this study, we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion.

Results

Treatment with anti-S100A9 antibodies improved the clinical score by 50%, diminished immune cell infiltration, reduced inflammatory cytokines, both in serum and in the joints, and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα, IL-1β and IL-6, and of chemokines like MIP-1α and MCP-1.

Conclusion

The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively, our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore, S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed.  相似文献   

17.
Inhibition of inducible nitric oxide-synthase (iNOS) enzymatic activity during cutaneous wound repair leads to severely impaired tissue regeneration. To assess whether disturbed leukocyte infiltration might participate in impaired repair, we determined expressional kinetics of neutrophil-attracting macrophage inflammatory protein-2 (MIP-2), and monocyte-attracting macrophage chemoattractant protein-1 (MCP-1) using an excisional wound healing model in mice. MCP-1 was induced in epithelial keratinocytes upon wounding, and our data indicate that NO serves a negative regulatory role for MCP-1 expression in vivo, as clearly reduced numbers of wound margin keratinocytes associated with NO-deficient repair compensate for high MCP-1 expression levels observed during normal healing. MIP-2 expression was restricted to hair follicles which were not reduced in number during NO-deficient repair. In vitro studies confirmed a regulatory role of NO for keratinocyte-derived chemokine expression, as NO attenuated IL-1beta- and TNF-alpha-induced MCP-1 mRNA expression, whereas NO augmented IL-1beta-induced IL-8 (functional human homolog to murine MIP-2) mRNA expression in the human keratinocyte cell line HaCaT.  相似文献   

18.
Agents that can arrest cellular proliferation are now providing insights into mechanisms of growth factor action and how this action may be controlled. It is shown here that the macrophage activating agents tumor necrosis factor-alpha (TNF alpha), interferon-gamma (IFN gamma), and lipopolysaccharide (LPS) can maximally inhibit colony stimulating factor-1 (CSF-1)-induced, murine bone marrow-derived macrophage (BMM) DNA synthesis even when added 8-12 h after the growth factor, a period coinciding with the G1/S-phase border of the BMM cell cycle. This inhibition was independent of autocrine PGE2 production or increased cAMP levels. In order to compare the mode of action of these agents, their effects on a number of other BMM responses in the absence or presence of CSF-1 were examined. All three agents stimulated BMM protein synthesis; TNF alpha and LPS, but not IFN gamma, stimulated BMM Na+/H+ exchange and Na+,K(+)-ATPase activities, as well as c-fos mRNA levels. IFN gamma did not inhibit the CSF-1-induced Na+,K(+)-ATPase activity. TNF alpha and LPS inhibited both CSF-1-stimulated urokinase-type plasminogen activator (u-PA) mRNA levels and u-PA activity in BMM, whereas IFN gamma lowered only the u-PA activity. In contrast, LPS and IFN gamma, but not TNF alpha, inhibited CSF-1-induced BMM c-myc mRNA levels, the lack of effect of TNF alpha dissociating the inhibition of DNA synthesis and decreased c-myc mRNA expression for this cytokine. These results indicate that certain biochemical responses are common to both growth factors and inhibitors of BMM DNA synthesis and that TNF alpha, IFN gamma, and LPS, even though they all have a common action in suppressing DNA synthesis, activate multiple signaling pathways in BMM, only some of which overlap or converge.  相似文献   

19.
Matrix metalloproteinase-8, released mainly from neutrophils, is a critical regulator of the inflammatory response by its ability to cleave multiple mediators. Herein, we report the results of a model of endotoxemia after intraperitoneal LPS injection in mice lacking MMP-8 and their wildtype counterparts. Control, saline-treated animals showed no differences between genotypes. However, there was an increased lung inflammatory response, with a prominent neutrophilic infiltration in mutant animals after LPS treatment. Using a proteomic approach, we identify alarmins S100A8 and S100A9 as two of the main differences between genotypes. Mice lacking MMP-8 showed a significant increase in these two molecules in lung homogenates, but not in spleen and serum. Mice lacking MMP-8 also showed an increase in MIP-1α levels and a marked activation of the non-canonical NF-κB pathway, with no differences in CXC-chemokines such as MIP-2 or LIX. These results show that MMP-8 can modulate the levels of S100A8 and S100A9 and its absence promotes the lung inflammatory response during endotoxemia.  相似文献   

20.
Xiao  Bao-Guo  Mousa  Alyaa  Kivisäkk  Pia  Seiger  Åke 《Brain Cell Biology》1998,27(8):575-580
The cellular infiltration found during CNS inflammation consists of monocytes and activated T cells, suggesting the presence of cell-specific chemotactic signals during inflammatory responses. Astrocyte chemokine expression might contribute to site-specific leukocyte infiltration within the CNS. To investigate the factors that regulate astrocyte chemokine expression, we examined the ability of human fetal astrocytes to induce β-family chemokine mRNA. Astrocyte-derived monocyte chemoattractant protein-1 (MCP-1), RANTES, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β mRNA were easily induced by lipopolysaccharide and/or the proinflammatory cytokines (IFNγ and/or TNF-α), respectively. Addition of both IFNγ and TNF-α together did not lead to an additive effect but resulted in the inhibition of MCP-1 and MIP-1β mRNA expression, indicating that interaction between chemokines and cytokines may play a key role in regulating the local immune response of resident and infiltrating cells at the site of lesion. Interestingly, ultraviolet light-inactivated measles virus, but not cytomegalovirus, strongly induced expression of MCP-1, RANTES, MIP-1α, and MIP-1β mRNA in human embryonic astrocytes, especially MCP-1 and MIP-1β. An association occurs between the β-family chemokine expression in astrocytes and inflammatory factors/virus, suggesting a possible role for β-family chemokines in the pathogenesis of CNS inflammatory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号