首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch kinetics of polyhydroxybutyrate (PHB) synthesis in a bioreactor under controlled conditions of pH and dissolved oxygen gave a biomass of 14 g l(-1) with a PHB concentration of 6.1 g l(-1) in 60 h. The data of the batch kinetics was used to develop a mathematical model, which was then extrapolated to fed-batch by incorporating the dilution due to substrate feeding. Offline computer simulation of the fed-batch model was done to develop the nutrient feeding strategies in the fed-batch cultivation. Fed-batch strategies with constant feeding of only nitrogen and constant feeding of both nitrogen and fructose were tried. Constant feeding strategy for nitrogen and fructose gave a better PHB production rate of 0.56 g h(-1) over the value obtained in batch cultivation (PHB production rate - 0.4 g h(-1)).  相似文献   

2.
Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.  相似文献   

3.

An integrated metabolic–polymerization–macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  相似文献   

4.
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that can be synthesized through bacterial fermentation. In this study, Cupriavidus necator H16 is used to synthesize PHB by using Jatropha oil as its sole carbon source. Different variables mainly jatropha oil and urea concentrations, and agitation rate were investigated to determine the optimum condition for microbial fermentation in batch culture. Based on the results, the highest cell dry weight and PHB concentrations of 20.1 and 15.5 g/L, respectively, were obtained when 20 g/L of jatropha oil was used. Ethanol was used as external stress factor and the addition of 1.5 % ethanol at 38 h had a positive effect with a high PHB yield of 0.987 g PHB/g jatropha oil. The kinetic studies for cell growth rate and PHB production were conducted and the data were fitted with Logistic and Leudeking–Piret models. The rate constants were evaluated and the theoretical values were in accordance with the experimental data obtained.  相似文献   

5.
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.  相似文献   

6.
This study demonstrated the improved polyhydroxybutyrate (PHB) production via high cell density cultivation of Bacillus megaterium BA-019 with balanced initial total sugar concentration and carbon to nitrogen (C/N) weight ratio. In the 10 L stirred fermentor operated at 30 °C, pH 7.0, 600 rpm, and 1.0 vvm air, with the initial total sugar concentration of 60 g/L and urea at the C/N weight ratio of 10:1, 32.48 g/L cell biomass with the corresponding PHB weight content of 26.94 % and volumetric productivity of 0.73 g/L h were obtained from batch cultivation. Continuing cultivation by intermittent feeding of the sugarcane molasses along with urea at the C/N weight ratio of 12.5:1 gave much improved biomass and PHB production (90.71 g/L biomass with 45.84 % PHB content and 1.73 g/L h PHB productivity). Similar biomass and PHB yields were obtained in the 90 L stirred fermentor when using the impeller tip speed as the scale-up criterion.  相似文献   

7.
Considering the industrial interest of Poly-β-hydroxybutyrate (PHB), bacteria isolated from the various marine arenas were screened for their ability to accumulate PHB and were compared with Wausteria eutropha (MTCC-1285). Among the 42 isolates, four strains showed the accumulation of PHB. The maximum PHB producer Vibrio sp. (MK4) was further studied in detail. To increase the productivity, steps were taken to evaluate the effect of carbon sources, nitrogen sources, pH and sodium chloride concentration on PHB productivity by MK4. The optimized conditions were further used for the batch fermentation over a period of 72 h. Significantly higher maximum biomass of 9.1 g/L with a PHB content of 4.223 g/L was obtained in a laboratory-scale bioreactor at 64 h, thus giving a productivity of 0.065 g/L/h. The extracted polymer was compared with the authentic PHB and was confirmed to be PHB using FTIR analysis and 1H NMR analysis. Thus, the study highlights the potential of the use of Vibrio sp (MK4) in the commercial production of PHB.  相似文献   

8.
Alcaligenes latus has been known to produce poly(3-hydroxybutyrate) (PHB) in a growth-associated manner even under nutrient-sufficient conditions. However, the PHB content obtained by fed-batch culture was always low, at ca. 50%, which makes the recovery process inefficient. In this study, the effect of applying nitrogen limitation on the production of PHB by A. latus was examined. In flask and batch cultures, the PHB synthesis rate could be increased considerably by applying nitrogen limitation. The PHB content could be increased to 87% by applying nitrogen limitation in batch culture, which was considerably higher than that typically obtainable (50%) under nitrogen-sufficient conditions. In fed-batch culture, cells were first cultured by the DO-stat feeding strategy without applying nitrogen limitation. Nitrogen limitation was applied at a cell concentration of 76 g (dry cell weight)/liter, and the sucrose concentration was maintained within 5 to 20 g/liter. After 8 h of nitrogen limitation, the cell concentration, PHB concentration, and PHB content reached 111.7 g (dry cell weight)/liter, 98.7 g/liter, and 88%, respectively, resulting in a productivity of 4.94 g of PHB/liter/h. The highest PHB productivity, 5.13 g/liter/h, was obtained after 16 h.  相似文献   

9.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

10.
The kinetics of growth, acid and solvent production in batch culture of Clostridium pasteurianum DSMZ 525 were examined in mixed or mono-substrate fermentations. In pH-uncontrolled batch cultures, the addition of butyric acid or glucose significantly enhanced n-butanol production and the ratio of butanol/1,3-propanediol. In pH-controlled batch culture at pH?=?6, butyric acid addition had a negative effect on growth and did not lead to a higher n-butanol productivity. On the other hand, mixed substrate fermentation using glucose and glycerol enhanced the growth and acid production significantly. Glucose limitation in the mixed substrate fermentation led to the reduction or inhibition of the glycerol consumption by the growing bacteria. Therefore, for the optimal growth and n-butanol production by C. pasteurianum, a limitation of either substrate should be avoided. Under optimized batch conditions, n-butanol concentration and maximum productivity achieved were 21 g/L, and 0.96 g/L?×?h, respectively. In comparison, mixed substrate fermentation using biomass hydrolysate and glycerol gave a n-butanol concentration of 17 g/L with a maximum productivity of 1.1 g/L?×?h. In terms of productivity and final n-butanol concentration, the results demonstrated that C. pasteurianum DSMZ 525 is well suitable for n-butanol production from mixed substrates of biomass hydrolysate and glycerol and represents an alternative promising production strain.  相似文献   

11.
The production of acellular pertussis in comparison with whole cell pertussis vaccines demands 5-25 times the amount of Bordetella pertussis' virulence factors, such as Pertussis Toxin (PT), to produce the same number of vaccine doses. An increase in the volumetric productivity by employing fed-batch rather than the currently used batch cultivations of B. pertussis could reduce the cost price of acellular pertussis vaccines. This study defined the conditions that enable fed-batch cultivations at high specific PT production. A solution containing lactate and glutamate was fed to the cultures at various rates. The feed rate and whether or not the fed substrates were completely consumed, significantly influenced cellular metabolism. If lactate was detectable in the culture broth while glutamate was not, poly-hydroxy-butyrate (PHB) was formed. Any PHB present was metabolized when glutamate became detectable again in the culture liquid. At higher lactate and glutamate concentrations, free fatty acids were produced. Though toxic, free fatty acids were not the reason the cultures stopped growing. By choosing appropriate conditions, a cell density of 6.5 g/L dry weight was reached, i.e. a 7-fold increase compared to batch culture. The metabolic mechanisms behind the formation of PHB and fatty acids are discussed, as well as how to increase the cell density further. The PT production stopped at 12 mg/L, well before growth stopped, indicating that regulatory mechanisms of PT production may be involved.  相似文献   

12.
Alcaligenes eutrophus NCIMB 11599 was cultivated to produce poly(3-hydroxybutyric acid) (PHB) from glucose by the automatic fed-batch culture technique. The glucose concentration of the culture broth was controlled at 10 to 20 g/L by two methods: using exit gas data obtained from a mass spectrometer and using an on-line glucose analyzer. The effect of ammonium limitation on PHB synthesis at different culture phases was studied. The final cell concentration, PHB concentration, and PHB productivity increased as ammonia feeding was stopped at a higher cell concentration. High concentrations of PHB (121 g/L) and total cells (164 g/L) were obtained in 50 h when ammonia feeding was stopped at the cell concentration of 70 g/L. The maximum PHB content reached 76% of dry cell weight and the productivity was 2.42 g/L h with the yield of 0.3 g PHB/g glucose.  相似文献   

13.
The optimal feed rate profiles of glucose and ammonium hydroxide were calculated using a proposed model, and implemented for the production of poly-beta-hydroxybutyric acid (PHB) by Alcaligenes eutrophus. By implementing these optimal feed rates with a high glucose feed concentration of 700 g/L and an ammonium hydroxide concentration of 7%(w/w), it was possible to achieve a high final cell concentration of 141 g/L and a high PHB concentration of 105 g/L in 40 h of fed-batch operation. The PHB productivity was as high as 2.63 g/(L hr). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 697-705, 1997.  相似文献   

14.
The kinetics of growth and lymphokine formation by T-cell hybridomas were investigated in batch and continuous culture. Product inhibitions by ammonia and lactic acid were considered in the proposed model and experimental data were used to determine the kinetic and inhibition constants. The effect of dilution rate on specific substrate consumption and product formation rates was investigated.  相似文献   

15.
A structured kinetic model for Zymomonas mobilis ATCC10988   总被引:1,自引:0,他引:1  
The inhibitory effects of glucose and ethanol on Zymomonas mobilis ATCC10988 were isolated through kinetic analysis of transient batch fermentation data. Growth of Z. mobilis was inhibited above a glucose concentration of 80 g/L. Growth was mildly inhibited by ethanol to 50 g/L, and severely inhibited above this concentration. Specific rates of ethanol production and glucose uptake were essentially invariant during batch fermentation. A structured kinetic model was developed, by way of augmentation of the Extended Bottleneck model, to quantify the kinetics of the growth and product formation processes. The model successfully describes the transient batch fermentation of Z. mobilis over a wide range of initial glucose concentration in a semidefined medium.  相似文献   

16.
发酵生产PHB动力学模型的研究   总被引:1,自引:0,他引:1  
用2L机械搅拌式发酵罐培养真养产碱杆菌920,得到菌体生长、基质消耗和产物PHB合成的动力学曲线。通过分析建立了发酵生产PHB的动力学模型,根据实验数据确定模型参数,将模型预测值与实验值进行比较,结果表明模型预测值与实验值较吻合。  相似文献   

17.
Mixed cultures submitted to acetate "feast" and "famine" cycles are able to store intracellularly high quantities of polyhydroxybutyrate (PHB). It was demonstrated in a previous study that the intracellular PHB content can be increased up to 78.5% (g HB/gVSS) of cell dry weight in a sequencing batch reactor (SBR) with optimised operating conditions. The specific PHB formation rate was also shown to be higher for mixed cultures than for pure cultures. Such high intracellular PHB contents and specific productivity open new perspectives for the industrial production of polyhydroxyalkanoates (PHA) using mixed cultures instead of pure cultures. The main goal in this work was to develop a mathematical model of mixed cultures envisaging the optimisation of PHB production. A relatively simple two-compartments cell model was developed based on experimental observations and other models proposed in the literature. A convenient experimental planing allowed to identify the kinetic parameters and yield coefficients. Experiments were performed with and without ammonia limitation enabling the analysis of PHB formation independently of the cell growth process. The experimental true yields partially confirm the theoretical values proposed in the literature. The final model exhibited high accuracy in describing the process state of most experiments performed, thus opening good perspectives for future model-based optimisation studies.  相似文献   

18.
Kinetic models are proposed for the batch production of succinic acid from glucose by Mannheimia succiniciproducens MBEL55E. The models include terms accounting for both substrate and product inhibitions. Experimental data collected from a series of batch fermentations with different initial glucose concentrations were used to estimate parameters and also to validate the models proposed. The optimal values of the parameters were approximated by minimizing the discrepancy between the model predictions and corresponding experimental data. The growth of M. succiniciproducens could be expressed by a modified Monod model incorporating inhibitions of glucose and organic acids accumulated in the culture broth. The Luedeking–Piret model was able to describe the formation of organic acids as the fermentation proceeded, in which succinic, acetic, and formic acids followed a mixed-growth-associated pattern. However, unexpectedly, lactic acid fermentation by M. succiniciproducens was nearly nongrowth-associated. In all cases, the model simulation matched well with the experimental observations, which made it possible to elucidate the fermentation characteristics of M. succiniciproducens during efficient succinic acid production from glucose. These models thus can be employed for the development and optimization of biobased succinic acid production processes.  相似文献   

19.
The production of poly-beta-hydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 in a cyclone bioreactor was compared using various culture methods: batch, fed-batch, and self-cycling fermentation (SCF) with and without extended periods of nutrient deprivation. SCF is a semi-continuous method that results in a nutrient limitation for every successive generation of cells and, therefore, may have advantages for products whose formation follow secondary metabolite kinetics. Use of the SCF technique without extended nutrient deprivation produced a PHB concentration of 1.2 g L(-1) as 40% of the biomass dry weight. With nitrogen deprivation for 4 or 6 h, the concentration of PHB decreased when compared to the standard SCF technique. However, nitrogen deprivation periods of 8 h resulted in an increase in PHB concentration to 2.7 g L(-1) or 59% of the biomass dry weight. The nutrient cycling may act to repress PHB accumulation during periods of nitrogen deprivation, unless a time threshold has been reached, after which PHB accumulation occurs as in normal batch culture. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 815-820, 1997.  相似文献   

20.
High cell density fed-batch fermentation of Alcaligenes eutrophus was carried out for the production of poly(3-hydroxybutyrate) (PHB) in a 60-L fermentor. During the fermentation, pH was controlled with NH(4)OH solution and PHB accumulation was induced by phosphate limitation instead of nitrogen limitation. The glucose feeding was controlled by monitoring dissolved oxygen (DO) concentration and glucose concentration in the culture broth. The glucose concentration fluctuated within the range of 0-20 g/L. We have investigated the effect of initial phosphate concentration on the PHB production when the initial volume was fixed. Using an initial phosphate concentration of 5.5 g/L, the fed-batch fermentation resulted in a final cell concentration of 281 g/L, a PHB concentration of 232 g/L, and a PHB productivity of 3.14 g/L . h, which are the highest values ever reported to date. In this case, PHB content, cell yield from glucose, and PHB yield from glucose were 80, 0.46, and 0.38% (w/w), respectively. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 28-32, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号