首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the synergids of Proboscidea louisianica was investigated from just before fertilization until 48 hr after pollination. It was found that the cytoplasm of one synergid consistently begins to degenerate before arrival of the pollen tube at the embryo sac, and that it is always this synergid which receives the pollen tube tip and its discharge. The other synergid (persistent synergid) remained unchanged throughout the study period. Polysaccharide vesicles of pollen tube origin were observed fusing with the pollen tube wall as well as contributing to cell wall formation of the degenerate synergid. In one ovule (48 hr after pollination) two pollen tubes had entered and grown the length of the micropyle, but only the first tube penetrated the degenerate synergid and discharged normally. The second pollen tube was abutting against the persistent synergid, but had not entered or discharged. In another exceptional case (18 hr after pollination), a pollen tube had grown the length of the micropyle, but did not discharge, or enter either synergid. Both synergids of this ovule were observed to be completely intact. It is concluded that synergid and pollen tube cytoplasmic degeneration is the result of a very specific interaction between these two cells and that this degeneration is probably a prerequisite for normal pollen tube entrance and discharge into the embryo sac, and for male gamete transfer to the egg and central cell.  相似文献   

2.
Summary Synergid degeneration was examined in the isolated embryo sac and egg apparatus of Nicotiana tabacum using quantitative cytology, fluorochromatic reaction (FCR) and chlorotetracycline (CTC). Most synergid degeneration occurs after pollen tubes (PT) arrive in the ovarian chamber between 42 and 48 h after pollination; synergid degeneration was precluded when PT were prevented from entering the ovary by stylar excision indicating that the signal that triggers synergid degeneration travels only relatively short distances in this plant. There was no evidence for any preferentiality between right or left synergids with regard to cell size or degeneration pattern. FCR staining confirms that synergid degeneration involves the loss of membrane integrity and is a reliable indicator of the onset of degeneration. CTC labeling of the degenerated synergid reveals that a concentrated reserve of membrane-bound calcium is present in the receptive synergid, possibly aiding in the attraction, arrest and discharge of the PT, releasing the sperms into the receptive ES.  相似文献   

3.
The ultrastructure of the embryo sac, nucellus, and parts of the micropyle of Lilium longiflorum were studied both before and after pollen tube penetration to examine the interactions between ovule and pollen tube, using transmission electron microscopy and light microscopy. Before pollen tube penetration the egg cell and two synergids are similar. No filiform apparatus was detected and no synergid degeneration occurs prior to pollen tube penetration. The polar nuclei do not fuse until fertilization. No differences in embryo sac ultrastructure were detected between pollinated ovules unpenetrated by pollen tubes and unpollinated flowers of a comparable age. Shortly after the discharge of the pollen tube two enucleated cytoplasmic bodies with different ribosome densities were observed in the degenerated cytoplasm. These structures border both on the central cell and the egg cell as well as each other and are interpreted as remains of sperm cytoplasm after transmission of sperm nuclei. In the central cell both the sperm nucleus and the polar nuclei are associated with endoplasmic reticulum (ER). ER is thought to be a transport mechanism to achieve contact between the haploid polar nuclei and the sperm nucleus. In the egg cell sperm nucleus alignment is not visibly achieved by ER. The persistent cells of the egg apparatus and the central cell appear to become more metabolically active after pollen tube penetration. Pollen tube penetration already occurs despite the absence of a filiform apparatus and a low level of differences between the cells of the egg apparatus.  相似文献   

4.
Ovules of Nicotiana tabacum L. were cryofixed with a propane-jet freezer and freeze-substituted in acetone to examine technique-dependent changes in pre- and post-fertilization embryo sacs using rapidly frozen material. Freezing quality was acceptable in 10% of the embryo sacs in the partially dissected ovules, with ice-crystal damage frequently evident in vacuoles and nuclei. One of the two synergids begins to degenerate before pollen-tube arrival in cryofixed material, with breakdown of the plasma membrane and large chalazal vacuole delayed until the penetration of the pollen tube. Early synergid degeneration involved characteristic increases in cytoplasmic electron density and the generation of cytoplasmic bodies to the intercellular space through “pinching-off”. Upon pollen-tube arrival, the male gametes are released through a terminal aperture into the degenerate synergid. Sperm cells undergo morphological alteration before gametic fusion: their mitochondrial electron density increases, the endoplasmic reticulum dilates, cytoplasm becomes finely vacuolated and the surrounding pollen plasma membrane is lost, causing the sperm cells and vegetative nucleus to dissociate. Discharge of the pollen tube results in the formation of numerous enucleated cytoplasmic bodies which are either stripped or shed from sperm cells and pollen-tube cytoplasm. Two so-called X-bodies are found in the degenerate synergid after pollen-tube penetration: the presumed vegetative nucleus occurs at the chalazal end and the presumed synergid nucleus near the micropylar end.  相似文献   

5.
Summary In vitro penetration of the micropyle of freshly isolatedGasteria verrucosa ovules by pollen tube was monitored on agar medium. 40–60% of the micropyles were penetrated, comparable with in vivo penetration percentages. When germinated on agar,Gasteria pollen tube elongation lasts for up to 8 h while plasma streaming continues for about 20–24 h. The generative cell divides between 7 and 20 h after germination, and after 20 h the pollen tube arrives at one of the synergids. The sperm cells arrive after 22 h. The whole process takes more time in vitro than in vivo. In fast growing pollen tubes, a pulsed telescope-like growth pattern of tube elongation is observed. The formation of pollen tube wall material precedes tube elongation and probably prevents regular enlargement of the pollen tube tip-zone. Rapid stretching of the new pollen tube wall material follows, probably due to gradually increased osmotic pressure and the use of lateral wall material below the tip. The stretching ceases when the supplies of plasma membrane and excretable wall material are exhausted. Multiple pollen tube penetration of the micropyle occurs in vitro as it does in vivo. Most pollen tube growth ceases within the micropyle but, if it continues, the pollen tubes curl. Inside the micropyle the pollen tube shows haustorial growth. At the ultrastructural level, the wall thickening of in vitro pollen tubes is quite similar to that in vivo. Before transfer of pollen tube cytoplasm a small tube penetrates one of the synergids. Sperm nuclei with condensed chromatin are observed in the pollen tube and the synergid. In vivo prometaphase nuclei are found in the most chalazal part of a synergid, against the egg cell nucleus and nucleus of the central cell at a later stage. Using media forLilium ovule culture,Gasteria ovules were kept alive for at least 6 weeks. Swelling of the ovule depends on pollen tube penetration. The conditions for fertilization to occur after in vitro ovular pollination seem to be present.  相似文献   

6.
 Pollen tube growth in the pistil and pollen tube penetration of ovules have both been studied in crosses between cultivars from Tulipa gesneriana L. and 12 tulip species from all eight sections of the genus Tulipa to identify pre-fertilization barriers. Depending on the cross, pollen tubes grew as far as the stigma or the style or continued growing down into the ovary. Pollen tubes penetrated none or only a few percent of the ovules of some crosses, despite the presence of many pollen tubes in the ovary. In other crosses, from which no or only a few hybrids have been obtained after seed maturation on the plant, pollen tube penetration was found in up to 79% of the ovules. Apparently, various kinds of barriers preventing fertilization or normal embryogenesis occur in interspecific tulip crosses. Received: 26 July 1996 / Revision accepted: 31 January 1997  相似文献   

7.
8.
The synergid cell of Torenia fournieri attracts pollen tubes by a diffusible but yet unknown chemical attractant. Here we investigated the species difference of the attractant using five closely related species in two genera, namely T. fournieri, Torenia baillonii, Torenia concolor, Lindernia (Vandellia) crustacea, and Lindernia micrantha. These five species have an exserted embryo sac, and ablation experiments confirmed that their synergid cells attracted the pollen tube. When ovules of T. fournieri and one of the other species were cultivated together with pollen tubes of each species, pollen tubes were significantly more attracted to synergid cells of the corresponding species. The attraction was not affected by the close proximity of embryo sacs of different species. This suggests that the attractant is a species-preferential molecule that is likely synthesized in the synergid cell. The calcium ion, long considered a potential attractant, could not serve as the sole attractant in these species, because elevation of the calcium ion concentration did not affect the observed attraction. In vivo crossing experiments also showed that the attraction of the pollen tube to the embryo sac was impaired when pollen tubes of different species arrived around the embryo sac, suggesting that the species preferentiality of the attractant may serve as a reproductive barrier in the final step of directional control of the pollen tube.  相似文献   

9.
Morphological changes in the nuclear degeneration of the synergid (mainly the synergid that receives the pollen tube) and antipodal cells in Triticum aestivum were studied. Although located in the same embryo sac, and derived from the same megaspore, nuclear degeneration of the synergid and antipodal cells differs greatly. Nuclear degeneration in the synergid is characterized by pycnosis, i.e., total chromatin condensation, nuclear deformation and distinct shrinkage in volume, followed by the formation of an irregular and densely stained mass—the degenerated nucleus—while the nucleolus disappears prior to the degradation of chromatin. In contrast, in the nuclear degeneration of antipodal cells, chromatin is only partly condensed and the nuclear volume changes only slightly after the distinct chromatin condensation. Chromatolysis then occurs, i.e., stainable contents disappear while the nuclear envelope is retained. The nucleoli persist after the disappearance of the chromatin. The possible functions of nuclear degeneration of synergid and antipodal cells are discussed, especially with respect to the guidance of pollen tube growth and the proliferation of free-nuclear endosperm. The degeneration of synergids and antipodal cells in T. aestivum are distinct forms of programmed cell death, regarded as cytoplasmic cell death and nuclear degradation in advance of cell death, respectively.  相似文献   

10.
Z. Kristóf  O. Tímár  K. Imre 《Protoplasma》1999,208(1-4):149-155
Summary Calcium distribution in ovules ofTorenia fournieri was studied by electron energy loss spectroscopy and transmission electron microscopic visualization of calcium antimonate precipitates. High calcium levels were found in the ovules ofT. fournieri. Calcium is situated mainly in extracellular regions before fertilization, including the surface of embryo sac, in the mucilage, and among the cells of the egg apparatus. Intracellular calcium was found only in the nucellar cells around the embryo sac and in the epidermis of the central axis and funiculus. After pollination, a labyrinthine structure (coralloid-like cell wall formation) develops on the micropylar surfaces of the egg apparatus that contain high levels of calcium. Calcium levels increase in the degenerating synergid after the penetration of the pollen tube. Calcium-antimonate precipitates are abundant in vacuoles of the disrupted synergid and pollen tube cytoplasm.Abbreviations EELS electron energy loss spectroscopy - EDX energy-dispersive X-ray microanalysis - LS labyrinthine structure  相似文献   

11.
In Angiosperms, the male gametes are delivered to the female gametes through the maternal reproductive tissue by the pollen tube. Upon arrival, the pollen tube releases the two sperm cells, permitting double fertilization to take place. Although the critical role of the female gametophyte in pollen tube reception has been demonstrated, the underlying mechanisms remain poorly understood. Here, we describe lorelei, an Arabidopsis thaliana mutant impaired in sperm cell release, reminiscent of the feronia/sirène mutant. Pollen tubes reaching lorelei embryo sacs frequently do not rupture but continue to grow in the embryo sac. Furthermore, lorelei embryo sacs continue to attract additional pollen tubes after arrival of the initial pollen tube. The LORELEI gene is expressed in the synergid cells prior to fertilization and encodes a small plant-specific putative glucosylphosphatidylinositol-anchored protein (GAP). These results provide support for the concept of signaling mechanisms at the synergid cell membrane by which the female gametophyte recognizes the arrival of a compatible pollen tube and promotes sperm release. Although GAPs have previously been shown to play critical roles in initiation of fertilization in mammals, flowering plants appear to have independently evolved reproductive mechanisms that use the unique features of these proteins within a similar biological context.  相似文献   

12.
ETHYLENE INSENSITIVE 3 (EIN3) is a key regulator of ethylene signaling, and EIN3‐BINDING F‐BOX1 (EBF1) and EBF2 are responsible for EIN3 degradation. Previous reports have shown that the ebf1 ebf2 double homozygous mutant cannot be identified. In this study, the genetic analysis revealed that the ebf1 ebf2 female gametophyte is defective. The pollination experiment showed that ebf1 ebf2 ovules failed to attract pollen tubes. In female gametophyte/ovule, the synergid cell is responsible for pollen tube attraction. Observation of the pEIN3::EIN3‐GFP transgenic lines showed that EIN3 signal was over‐accumulated at the micropylar end of ebf1 ebf2 female gametophyte. The overexpression of stabilized EIN3 in synergid cell led to the defect of pollen tube guidance. These results suggested that the over‐accumulated EIN3 in ebf1 ebf2 synergid cell blocks its pollen tube attraction which leads to the failure of ebf1 ebf2 homozygous plant. We identified that EIN3 directly activated the expression of a sugar transporter, SENESCENCE‐ASSOCIATED GENE29 (SAG29/SWEET15). Overexpression of SAG29 in synergid cells blocked pollen tube attraction, suggesting that SAG29 might play a role in ethylene signaling to repel pollen tube entry. Taken together, our study reveals that strict control of ethylene signaling is critical for the synergid cell function during plant reproduction.  相似文献   

13.
The ultrastructure and composition of the synergids of Capsella bursa-pastoris were studied before and after fertilization. The synergids in the mature embryo sac contain numerous plastids, mitochondria, dictyosomes and masses of ER and associated ribosomes. Each synergid contains a large chalazal vacuole, a nucleus with a single nucleolus and is surrounded by a wall. This wall is thickest at the micropyle end of the cell where it proliferates into the filiform apparatus. At the chalazal end of the cell the wall thins and may be absent for small distances. The pollen tube grows into one of the two synergids through the filiform apparatus and extends one-third the length of the cell before it discharges. Following discharge of the pollen tube, mitochondria and plastids of the tube can be identified in the synergid as can hundreds of 0.5 μ polysaccharide spheres liberated by the tube. The method by which the sperm or sperm nuclei enter the egg or central cell is not known although an apparent rupture was found in the wall of the egg near the tip of the pollen tube. The second synergid changes at the time the pollen tube enters the first synergid. These changes result in the disorganization of the nucleus and loss of the chalazal wall and plasma membrane. Eventually this synergid loses its identity as its cytoplasm merges with that of the central cell.  相似文献   

14.
Actin coronas in normal and indeterminate gametophyte1 embryo sacs of maize   总被引:2,自引:2,他引:0  
 The actin cytoskeletal organization and nuclear behavior of normal and indeterminate gametophyte1 (ig1) embryo sacs of maize were examined during fertilization. After pollination, during degeneration of one of the synergids and before arrival of the pollen tube, the cytoskeletal elements undergo dramatic changes including formation of the actin coronas at the chalazal end of the degenerating synergid and at the interface between the egg cell and central cell. The actin coronas are present only for a limited period of time and their presence is coordinated with pollen tube arrival and fusion of the gametes; they disappear before the zygote divides. This allows us to estimate the frequency of fertilized ovules along the ear. Up to 88% of the ovules on an ear contain actin coronas in the embryo sacs when observed 16–19 h after pollination, indicating the high frequency of fertilizing kernels along the ear at this stage. In the ig embryo sacs, two or more degenerated synergids containing actin coronas at their chalazal ends receive multiple pollen tubes for gametic fusion and can consequently give rise to twin or polyembryos. These findings with the monocot maize are consistent with previous reports on the dicots Plumbago and Nicotiana, suggesting that the formation of actin coronas in the embryo sac during fertilization is a universal phenomenon in angiosperms and is part of a mechanism of interaction between gametic signaling and actin cytoskeleton behavior which appears to precisely position and facilitate the access of male gametes to the egg cell and central cell for fusion. Received: 15 May 1998 / Revision accepted: 17 August 1998  相似文献   

15.
SEDGLEY  M. 《Annals of botany》1979,44(3):353-359
Pollen tube growth, fertilization and early embryo and endospermdevelopment were studied using light microscopy in the avocadovarieties Fuerte and Hass. The ovule was penetrated by a pollen tube by 24 h after pollination.On reaching the ovary, the pollen tube grew along the surfaceof the inner ovary wall. It then grew around the funicle, throughthe micropyle in the inner integument and between the papillatecells at the apex of the nucellus. It entered the embryo sacvia a synergid. Sperm nuclei were present in the embryo sacat 48 h after pollination and fusion of the polar and spermnuclei took place before fusion of the egg and sperm. The endospermnucleus was the first to divide and cell wall formation occurredfollowing division. The first division of the zygote occurredat 5 or 6 days after pollination. In the variety Fuerte less than 20 per cent of the 1- and 2-day-oldembryo sacs had been penetrated by a pollen tube although tubeswere often observed in the integument or nucellus. In the varietyHass over 60 per cent of the embryo sacs were penetrated. Inwas concluded that low yields of the variety Fuerte may be partlyattributable to the failure of the pollen tube to penetratethe embryo sac. Persea americana Mill, avocado, pollen tube, fertilization, embryo, endosperm  相似文献   

16.
Changes in actin organization in the living egg apparatus of Torenia fournieri from anthesis to post-fertilization have been investigated using microinjection and confocal microscopy. Our results revealed that the actin cytoskeleton displays dramatic changes in the egg apparatus and appears to coordinate the events of synergid degeneration, pollen tube arrival and gametic fusion during fertilization. Synergid degeneration occurs after anthesis and is accompanied by actin fragmentation and degradation. The actin cytoskeleton becomes organized with numerous aggregates in the chalazal end of the degenerating synergid, and some of the actin infiltrates into the intercellular gap between synergids, egg and central cell, forming a distinct actin band. An actin cap is present near the filiform apparatus after anthesis and disappears after pollen tube arrival. In the egg cell, actin filaments initially organize into a network and after pollination become fragmented into numerous patches in the cortex. These structures, along with the actin in the degenerating synergid and intercellular spaces form two distinct actin coronas during fertilization. The actin coronas vanish after gametic fusion. This is the first report of changes in actin organization in the living egg apparatus. The reorganization of the actin cytoskeleton in the egg apparatus and the presence of the actin coronas during fertilization suggest these events may be a necessary prelude to reception of the pollen tube and fusion of the male and female gametes. Received: 11 November 1999 / Accepted: 31 January 2000  相似文献   

17.
被子植物受精机制的研究进展   总被引:1,自引:0,他引:1  
被子植物的受精是一个复杂而精巧的过程。花粉管到达子房,通过退化助细胞进入胚囊,释放出两个精细胞。原来在花粉管中相互联结的两个精细胞在退化助细胞中分开,一个与卵细胞融合,另一个与中央细胞融合,完成双受精。目前对双受精过程中有关雌、雄配子识别的机制还知之甚少。本文介绍了目前被子植物精、卵细胞融合前后的细胞周期变化、退化助细胞的功能、精细胞在退化助细胞中迁移的研究动态、精细胞的倾向受精和卵细胞的激活等被子植物受精生物学领域中的一些新的研究成果和发展趋势。  相似文献   

18.
The synergid cells are located in the female gametophyte and are essential for angiosperm reproduction. During the fertilization process, a pollen tube grows into one of the synergid cells, ceases growth, ruptures, and releases its two sperm cells into this cell. The synergid cells produce an attractant that guides the pollen tube to the female gametophyte and likely contain factors that control arrest of pollen tube growth, pollen tube discharge, and gamete fusion. The synergid cells contain an elaborated cell wall at their micropylar poles, the filiform apparatus that likely plays a role in pollen tube guidance and pollen tube reception. Recent genetic, molecular, and physiological studies in Arabidopsis, maize, and Torenia have provided insights into synergid cell development and the control of pollen tube growth by the synergid cell.  相似文献   

19.
Calcium has an essential signaling, physiological, and regulatory role during sexual reproduction in flowering plants; elevation of calcium amounts is an accurate predictor of plant fertility. Calcium is present in three forms: (1) covalently bound calcium, (2) loosely bound calcium typically associated with fixed and mobile anions (ionic bonding); and (3) cytosolic free calcium-an important secondary messenger in cell signaling. Pollen often requires calcium for germination. Pollen tube elongation typically relies on external calcium stores in the pistil. Calcium establishes polarity of the pollen tube and forms a basis for pulsatory growth. Applying calcium on the tip may alter the axis; thus calcium may have a role in determining the directionality of tube elongation. In the ovary and ovule, an abundance of calcium signals receptivity, provides essential mineral nutrition, and guides the pollen tube in some plants. Calcium patterns in the embryo sac also correspond to synergid receptivity, reflecting programmed cell death in one synergid cell that triggers degeneration and prepares this cell to receive the pollen tube. Male gametes are released in the synergid, and fusion of the gametes requires calcium, according to in vitro fertilization studies. Fusion of plant gametes in vitro triggers calcium oscillations evident in both the zygote and primary endosperm during double fertilization that are similar to those in animals.  相似文献   

20.

Background and Aims

The genus Cytinus is composed of rootless, stemless and leafless parasites whose flowers are only visible during the reproductive period when they arise from the host tissues. Most of the taxa occur in Madagascar and South Africa, where mammal pollination has been suggested for one species. There is only one species in the Mediterranean region, and its pollination system has been unknown. Here, a long-term field observation study is combined with experimental pollination treatments in order to assess the pollination biology and reproductive system in the Mediterranean species Cytinus hypocistis.

Methods

Field studies were carried out in six populations in southern Spain over 4 years. Temporal and spatial patterns of variation in the composition and behaviour of floral visitors were characterized. Pollen loads and pollen viability were observed, and exclusion and controlled-pollination treatments were also conducted.

Key Results

Cytinus hypocistis is a self-compatible monoecious species that relies on insects for seed production. Ants were the main visitors, accounting for 97·4 % of total floral visits, and exclusion experiments showed that they act as true pollinators. They consistently touched reproductive organs, carried large pollen loads and transported viable pollen, although the different ant species observed in the flowers differed in their pollination effectiveness. The abundance of flying visitors was surprisingly low, and only the fly Oplisa aterrima contributed to fruit production and cross-pollination.

Conclusions

Mutualistic services by ant are essential for the pollination of Cytinus hypocistis. Although this parasite does not exhibit typical features of the ‘ant-pollination syndrome’, many other characteristics indicate that it is evolving to a more specialized ant-pollination system. The striking interspecific differences in the pollination systems of Mediterranean Cytinus (ant-pollinated) and some South African Cytinus (mammal-pollinated) make this genus an excellent model to investigate the divergent evolution of pollination systems in broadly disjunct areas.Key words: Ant, breeding system, Cytinus hypocistis, Cytinaceae, insects, flies, Mediterranean Basin, parasitic plant, pollination, Rafflesiaceae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号