首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of DSP-4 on brain NE levels and turnover in rats were investigated in six brain regions: cortex, hippocampus, cerebellum, brainstem, hypothalamus and locus coeruleus. Administration of 50 mg/kg of DSP-4 significantly decreased NE levels in all brain regions; greatest reductions occurred in the cortex (86% decrease) and in the hippocampus (91% decrease). Doses of DSP-4 less than 50 mg/kg did not significantly lower NE levels in other brain regions, except within the cerebellum. Levels of the NE metabolite 3-methoxy, 4-hydroxyphenylethylene glycol sulfate (MHPG-S04) declined in parallel with those of NE, except within the brainstem and the locus coeruleus. NE turnover, expressed as the ratio of the MHPG-S04 concentration to that of NE, was higher in the cortex and hippocampus than other regions in control animals, and NE turnover significantly increased only in these two areas after the administration of 50 mg/kg of DSP-4 (p less than 0.01). There were no significant changes in the levels of dopamine and a significant decrease of serotonin only in the striatum. These results indicate that DSP-4 is a neurotoxin with a strong predilection for noradrenergic neurons, that its effects vary according to brain region and that its administration increases NE turnover in those brain regions showing the greatest depletion of NE.  相似文献   

2.
The purpose of the present study was to evaluate the effects of alpha-2u-globulin, a sex-dependent male rat urinary protein on pituitary-gonadal functions and hypothalamic monoamine contents in male mice. Adult male mice, maintained under standardized laboratory conditions (L:D, 14:10) were injected subcutaneously with alpha-2u-globulin at a dose of 1 mg/animal/day or with vehicle daily for 14 days and killed 16 h after the last injection. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T) and testicular levels of T were measured by radioimmunoassays. The concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in medial basal hypothalamus (MBH) and anterior hypothalamus (AH) were measured by high performance liquid chromatography. Administration of alpha-2u-globulin led to a significant increase in plasma FSH and LH levels (P less than 0.05) as well as in plasma and testicular T levels (P less than 0.025). In the MBH of alpha-2u-globulin treated mice, there were significant elevations of NE (P less than 0.025), DA (P less than 0.01) and 5-HT (P less than 0.025) contents. In the AH, both DA (P less than 0.025) and 5-HT (P less than 0.01) contents were decreased while NE content remained unaltered. These results indicate that administration of alpha-2u-globulin can lead to a significant stimulation of pituitary-testicular axis and that this effect may be mediated through alteration of hypothalamic monoamines.  相似文献   

3.
Mass-fragmentographic methods are described that enable the simultaneous measurement of total, free, and conjugated catecholamines in brain tissues. These methods were used to assess the distribution, kinetics, and pharmacological characteristics of total, free, and conjugated catecholamines in the hypothalamus, caudate nucleus, hippocampus, and septum. Conjugated norepi-nephrine (NE) represents ?20% of total NE in the hypothalamus, septum, and hippocampus, whereas the percentage is ? 50% in the caudate nucleus. The percentages of conjugated dopamine (DA) in these brain areas are consistently less than those of NE (?13%). Although in the hypothalamus the steady-state concentrations of total, free, and conjugated NE are over four times higher than those of the corresponding total, free, and conjugated DA, the turnover rates of this DA are comparable with those of the corresponding NE. Further, the ratios of conjugated NE or DA turnover rates to those of the total amines are higher than the corresponding ratios of their steady-state concentrations. Treatments with pargyline (75 mg/kg, i.p.; rats killed 30 and 60 min later) failed to change the contents of conjugated catecholamines in the hypothalamus and the caudate nucleus significantly. Pharmacological manipulation with a number of proto-typic drugs revealed that although the assay of conjugated catecholamines might shed additional light on the effects of drugs on central catecholamines, the assessment of total or free amines are on the whole equally informative. In conclusion, a detailed assessment of brain conjugated catecholamines is reported. The information provided, fills a gap in our knowledge that has up to now not been adequately addressed.  相似文献   

4.
Effect of latent iron deficiency on metal levels of rat brain regions   总被引:1,自引:0,他引:1  
Seven different metals (iron, copper, zinc, calcium, manganese, lead, and cadmium) were studied in eight different brain regions (cerebral cortex, cerebellum, corpus striatum, hypothalamus, hippocampus, midbrain, medulla oblongata, and pons) of weaned rats (21-d-old) maintained on an iron-deficient (18-20 mg iron/kg) diet for 8 wk. Iron was found to decrease in all the brain regions, except medulla oblongata and pons, in comparison to their respective levels in control rats, receiving an iron-sufficient (390 mg iron/kg) diet. Brain regions showed different susceptibility toward iron deficiency-induced alterations in the levels of various metals, such as zinc, was found to increase in hippocampus (19%, p less than 0.05) and midbrain (16%, p less than 0.05), copper in cerebral cortex (18%, p less than 0.05) and corpus striatum (16% p less than 0.05), calcium in corpus striatum (22%, p less than 0.01) and hypothalamus (17%, p less than 0.02), and manganese in hypothalamus (18%, p less than 0.05) only. Toxic metals lead and cadmium also increased in cerebellum (19%, p less than 0.05) and hippocampus (17%, p less than 0.05) regions, respectively. Apart from these changes, liver (64%, p less than 0.001) and brain (19%, p less than 0.01) nonheme iron contents were found to decrease significantly, but body, liver, and brain weights, packed cell volume, and hemoglobin content remained unaltered in these experimental rats. Rehabilitation of iron-deficient rats with an iron-sufficient diet for 2 wk recovered the values of zinc in both the hippocampus and mid-brain regions and calcium in the hypothalamus region only. Liver nonheme iron improved significantly; however, no remarkable effect was noticed in brain nonheme iron following rehabilitation. It may be concluded that latent iron deficiency produced alterations in various metal levels in different brain regions, and corpus striatum was found to be the most vulnerable region for such changes. It is also evident that brain regions were resistant for any recovery in their altered metallic levels in response to rehabilitation for 2 wk.  相似文献   

5.
The spontaneous activity of rats tested both acutely and chronically (15 minutes per day for 25 days) in an elevated X-maze composed entirely of open runways was found to be significantly less (P less than 0.01) than that measured for rats tested in a maze of similar dimensions composed entirely of enclosed runways. Acute exposure to both mazes caused significant increases (P less than 0.01) in plasma corticosterone when compared with unstressed control rats. Chronic exposure to the open, but not the enclosed maze caused a significant (P less than 0.01) attenuation of this response. Chronic exposure to the open maze caused significant increases (P less than 0.01) in the concentrations of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in hippocampus, hypothalamus and cerebral cortex when compared with unstressed control rats. When compared with the data for the rats tested repeatedly in the enclosed maze, chronic exposure to the open maze increased the 5-HT concentrations in hypothalamus (P less than 0.05) and cerebral cortex (P less than 0.01) and the 5-HIAA concentrations in hypothalamus (P less than 0.01) and hippocampus (P less than 0.01). The spontaneous locomotor activity of the rats tested in the open maze, correlated significantly (P less than 0.01) with plasma corticosterone and the 5-HIAA concentrations in hippocampus (P less than 0.01), hypothalamus (P less than 0.05) and cerebral cortex (P less than 0.01). In the rats tested in the enclosed maze, spontaneous activity only correlated significantly (P less than 0.01) with hippocampal 5-HIAA. It is concluded that the study has revealed clear differences in the behavioral, plasma corticosterone and brain 5-hydroxyindole responses to the two mazes but that the results do not provide unequivocal evidence that these differences occurred because the open maze was more aversive than the enclosed. It is also concluded that the study provides further support for the hypothesis that 5-HT turnover in the hippocampus may be directly related to the level of spontaneous locomotor activity.  相似文献   

6.
Interleukin-1 stimulates catecholamine release from the hypothalamus   总被引:4,自引:0,他引:4  
D L Palazzolo  S K Quadri 《Life sciences》1990,47(23):2105-2109
During a 60-min period, the in vitro release of norepinephrine (NE) from the hypothalami of male rats decreased by 28%. The presence of 50 or 100 ng of interleukin 1-beta (IL-1 beta) in the incubation medium prevented this decrease and raised the release by 17% or 45% respectively (P less than 0.05). The average release of dopamine (DA) decreased by 55% in the control group but 50 ng of IL-1 beta cut this decrease to 25%, and 100 ng of IL-1 beta not only completely prevented the decrease but raised the release by 44% (P less than 0.05). In a following 60-min period, when the hypothalami from the treatment groups were incubated without IL-1 beta, it resulted in sharp declines in the release of NE and DA, confirming that IL-1 beta was the stimulus for the increases in catecholamine release in the previous incubation period. It is concluded that IL-1 beta stimulates the release of catecholamines (and probably other neurotransmitters) in the brain which, in turn, mediate its central and neuroendocrine actions.  相似文献   

7.
杨Kun  丁虎 《生理学报》1991,43(4):345-351
The norepinephrine (NE) and angiotensin II (A II) contents in the brain regions of SHR and WKY (Wistar Kyoto) rats at different ages were determined by fluorospectrophotometry and radioimmunoassay. The systolic blood pressure (SBP) of the rats was measured indirectly with a tail cuff technique in conscious state. The results were as follows: There was no significant difference in the central A II and NE contents between SHR and WKY rats at 8-week age. Since 12th week age the SBP of SHR has increased gradually, up to 16th to 20th week and then maintained steady level. Whereas there was no significant change of SBP in WKY rats in the same span of age. In the early and late states of hypertension the A II contents in the medulla oblongata, pons, hypothalamus and nucleus caudatus of SHR were markedly higher than those of the age-matched WKY rats. But the change of NE content of SHR in the early stage showed a different picture as compared with that of WKY rats, i.e., NE decreased in medulla oblongata and anterior hypothalamus but increased in pons, posterior hypothalamus and nucleus caudatus. However, in the late stage there was no such significant difference between SHR and WKY rats. Consequently, it is suggested that the central A II and NE participated in the development of hypertension of SHR, and that the maintenance of hypertension is mainly dependent upon the increased A II content. Microinjection of captopril or 6-OHDA in the lateral cerebroventricle of SHR elicited a decrease of BP and reduction of both A II and NE contents in the medulla and hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The quantitative estimation of total dopamine (DA), noradrenaline (NE), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in the whole brain tissue of normal Nile grass rat, Arvicanthis niloticus, gives and average of 631 +/- 12 ng DA/g, 366 +/- 12 ng NE/g, 617 +/- 15 ng 5-HT/g and 431 +/- 10 ng 5-HIAA/g fresh brain tissue. The effect of barbitone sodium and thiopental sodium on the total DA, NE, 5-HT and 5-HIAA content in the brain tissue of the Nile grass rat, Arvicanthis niloticus, was studied. The total DA, NE, 5-HT and 5-HIAA contents were determined 5 hr after i.p. injection of different doses of barbitone sodium (20, 40 and 80 mg/ml/100 g body wt) and thiopental sodium (5, 10 and 20 mg/ml/100 g body wt). The effect of different time intervals (1, 10, 30 min, 1, 2.5, 5, 8, 16, 24 and 48 hr) on the total brain DA, NE, 5-HT and 5-HIAA content was investigated after i.p. injection of 40 mg of barbitone sodium and 10 mg of thiopental sodium/ml/100 g body wt. Both barbitone sodium and thiopental sodium caused an increase in DA, NE and 5-HT content and a decrease in 5-HIAA content in the brain tissue of Arvicanthis niloticus. The increase in the whole brain contents of DA, NE and 5-HT after the administration of barbitone sodium and thiopental sodium may be due either to inhibition of transmitter release by an action at the monoamine nerve terminal or to effects causing a decrease in nerve impulse flow. On the other hand, the decrease in 5-HIAA may be due to the decrease in the turnover of 5-HT.  相似文献   

9.
D H Smith  J M Neutel  M A Weber 《Life sciences》1991,48(25):2413-2421
In previous studies in the conscious rabbit and in isolated artery preparations, low doses of angiotensin II synergistically amplified the pressor effects of the sympathetic neurotransmitter, norepinephrine (NE). To determine whether these observations could be replicated in humans, 9 normal adult male volunteers (mean age: 34) each were given 3 i.v. doses of NE (25, 50 and 100 micrograms.kg-1.min-1) during consecutive 10 min infusion periods. On a second study day, the procedure was repeated during infusion of angiotensin II in a subpressor dose (1.25 ng.kg-1.min-1). The angiotensin II didn't alter the BP responses to NE, but it attenuated the heart rate (HR) decreases associated with the NE infusions by 80% (P less than 0.05), 42% (P less than 0.05) and 42% (P less than 0.1). The two study days were then repeated following 2 weeks of oral treatment with the angiotensin converting enzyme inhibitor captopril (which, despite significantly decreasing baseline BP, also tended to decrease HR). In the presence of captopril, the pressor responses to the NE challenges were reduced by 50% (P less than 0.05), 33% (P less than 0.05) and 13% (P less than 0.1) compared with the pre-captopril responses. Thus, angiotensin II in subpressor doses appears to enhance NE pressor effects by attenuating the compensatory HR responses, whereas inhibition of endogenous angiotensin II mechanisms weakens the BP-raising actions of NE. These findings in humans are consistent with earlier observations that the renin-angiotensin system can directly amplify sympathetic pressor effects in two separate ways: by modifying baroreceptor sensitivity and by enhancing the actions of norepinephrine on vascular smooth muscle.  相似文献   

10.
Phenytoin (DPH) is a widely used anticonvulsant drug but a conclusive mode of action is not yet clear. This study was undertaken to assess the effects of chronic administration of DPH on monoamine levels. DPH (50 mg/kg body weight) was administered to adult male Wistar rats by intraperitoneal injections for 45 days and the regional brain levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were assayed using high performance liquid chromatographic (HPLC) method. The experimental rats revealed no behavioral deficits of any kind nor body and brain weight deficits were observed. Increased NE levels were observed after DPH administration in motor cortex (P<0.05), striatum-accumbens (P<0.01) and hippocampus (P<0.01), whereas, NE level was decreased in brain stem (P<0.05). DA levels were increased in striatum-accumbens (P<0.05), hypothalamus (P<0.001) and cerebellum (P<0.001) but decreased in brainstem (P<0.01). In DPH treated rats, 5-HT levels were increased in motor cortex (P<0.001) but decreased in cerebellum (P<0.001) when compared to control group of rats. The present study suggest that chronic administration of DPH induces alterations in monoamine levels in specific brain regions. DPH seems to mediate, its anticonvulsant action by selectively altering the monoamine levels in different brain regions.  相似文献   

11.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2 h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9 W/Kg. Animals were divided in two groups: sham exposed (n = 6) and exposed group (n = 6).

Our observations indicate a significant decrease (P < 0.05) in the level of glutathione peroxidase, superoxide dismutase, and an increase in catalase activity. Moreover, protein kinase shows a significant decrease in exposed group (P < 0.05) of hippocampus and whole brain. Also, a significant decrease (P < 0.05) in the level of pineal melatonin and a significant increase (P < 0.05) in creatine kinase and caspase 3 was observed in exposed group of whole brain as compared with sham exposed. Finally, a significant increase in the level of ROS (reactive oxygen species) (P < 0.05) was also recorded.

The study concludes that a reduction or an increase in antioxidative enzyme activities, protein kinase C, melatonin, caspase 3, and creatine kinase are related to overproduction of reactive oxygen species (ROS) in animals under mobile phone radiation exposure. Our findings on these biomarkers are clear indications of possible health implications.  相似文献   

12.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2?h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9?W/Kg. Animals were divided in two groups: sham exposed (n?=?6) and exposed group (n?=?6). Our observations indicate a significant decrease (P?相似文献   

13.
丁虎  周期 《生理学报》1990,42(4):379-384
The content of norepinephrine (NE) and epinephrine (E) in the brain of spontaneously hypertensive rats has proved abnormal, but the cause remained unknown. It was shown in the recent work that NE content in pons, posterior hypothalamus, nucleus caudatus and E concentration in medulla oblongata, anterior and posterior hypothalamus of 12-week old stroke-prone spontaneously hypertensive rats (SHRSP) were much higher than those of age-matched Wister-Kyoto rats (WKY). SHRSP also showed higher levels of systolic blood pressure (SBP) and brain angiotensin II (A II) than WKY. Intracerebroventricular (icv) perfusion of angiotensin-converting enzyme inhibitor captopril (20 micrograms for each time and three times for each day for four weeks) inhibited the synthesis of brain A II and reduced SBP and NE, E contents in all examined brain areas in SHRSP and WKY. However, the effects of chronically perfused captopril on SBP and brain NE, E levels in SHRSP were much more significant than in WKY. The results indicate that the modulatory effects of central renin-angiotensin system (RAS) on central adrenergic and noradrenergic system might be overactivated in SHRSP, which might partially responsible for the abnormally high levels of NE, E in some of the brain areas of SHRSP.  相似文献   

14.
Noradrenergic and GABAergic systems in the medial hypothalamus influence plasma glucose and may be activated during glucoprivation. Microdialysis probes were placed into the ventromedial nucleus (VMH), lateral hypothalamus (LHA), and paraventricular nucleus (PVH) of male Sprague-Dawley rats to monitor extracellular concentrations of norepinephrine (NE) and GABA. During systemic hypoglycemia, induced by insulin (1.0 U/kg), NE concentrations increased in the VMH (P < 0.05) and PVH (P = 0.06) in a bimodal fashion during the first 10 min and 20-30 min after insulin administration. In the VMH, GABA concentrations increased (P < 0.05) in a similar manner as NE. Extracellular NE concentrations in the LHA were slightly lower (P = 0.13), and GABA levels remained at baseline. The increases in NE and GABA in the VMH were absent during euglycemic clamp; however, NE in the PVH still increased, reflecting a direct response to hyperinsulinemia. On the basis of these data, we propose that the activity of noradrenergic afferents to the medial hypothalamus is increased during hypoglycemia and influences the activity of local GABAergic systems to activate appropriate physiological compensatory mechanisms.  相似文献   

15.
A study was made of the influence of acute and repeated immobilization on the content of immunoreactive metenkephalin (ME), leu-enkephalin (LE) and beta-endorphine (beta-E) in different regions of rat brain and that of beta-E in rat blood. Acute immobilization for 30 min led to a decrease in the content of the enkephalins in the hypothalamus. Meanwhile 150-min immobilization caused a remarkable increase in the opioid concentration in the hypothalamus and of the enkephalins in the pituitary. At the same time the beta-E content in the pituitary dropped to 38% of the control (P less than 0.001), that in the blood was twice as increased (P less than 0.05). Repeated immobilization for 7 days abolished these changes in the hypothalamus and pituitraty. The next day following immobilization for 39 days the content of LE and beta-E in the hypothalamus, medulla oblongata, midbrain and blood plasma was noticeably lowered. However, after successive immobilization it rose to the control level. The data obtained are discussed in the light of the involvement of opiate systems in the realization of antinociceptive and emotional effects of stress.  相似文献   

16.
D A Haas  S R George 《Life sciences》1987,41(25):2725-2731
The effect of acute central administration of Neuropeptide Y (NPY) to adult male rats on the brain content of corticotropin-releasing factor immunoreactivity (CRF-ir) was investigated. The brain regions studied included frontal cortex, hippocampus, medulla-pons, midbrain-thalamus, cerebellum, neurointermediate lobe of pituitary, median eminence and the remaining hypothalamus. CRF-ir was determined in each of these regions using a radioimmunoassay specific for rat CRF. CRF-ir was found to be significantly increased in the major site of CRF localization in the brain, the hypothalamus, in NPY-treated rats as compared to vehicle-treated controls either 15 minutes (p less than 0.025) or 45 minutes (p less than 0.005) post-injection. This increase was localized to the median eminence (p less than 0.05 after 15 minutes, p less than 0.01 after 45 minutes). No statistically significant differences were noted in any of the other brain regions assessed. Plasma adrenocorticotropin levels were also found to increase following NPY treatment, an effect which became significant after 45 minutes (p less than 0.05). These data show that NPY can alter the content of hypothalamic CRF and may play a role in its regulation.  相似文献   

17.
We investigated the expression levels of leptin receptors in the brain of ovariectomized (OVX) rats. The mean expression level of ob mRNA in adipose tissues of OVX rats was significantly (P < 0.01) lower than that in the SHAM operation group rats, and the mean body weight of OVX rats was significantly (P < 0.01) greater than that in the SHAM group rats. However, there were no differences between serum leptin concentrations in these two groups. The mean level of leptin receptor (OB-R) mRNA expression in the brain tissue and the mean level of long form type OB-R (OB-RL) mRNA expression in the hypothalamus of the OVX rats were significantly (P < 0.05) lower than those in the SHAM group rats. These changes were cancelled by supplementation with 17 beta-estradiol in OVX rats. These results suggested that not only changes in the expression level of ob mRNA in adipose tissue and the serum leptin concentration but also changes in the OB-R mRNA in the brain are involved in the body weight increase in OVX rats and that a decrease in OB-R makes transmission of signals to suppress the amount of food intake difficult, thus leading to an increase in body weight.  相似文献   

18.
The aim of the present study was to determine the effect of activation of melatonin receptor sites on the activity of noradrenergic neurons in the C3H/HeN mouse brain. Changes in noradrenergic activity were assessed by measuring norepinephrine (NE) levels in the hypothalamus, frontal cortex, and hippocampus following inhibition of NE synthesis with alpha-methyl-p-tyrosine (alpha-MpT) (300 mg/kg, i.p., 2 h). 6-Chloromelatonin (1-30 mg/kg, i.p.) significantly retarded the alpha-MpT-induced decrease in NE levels in the hypothalamus, but not in hippocampus and frontal cortex. This effect was observed at 30 min and 60 min after 6-chloromelatonin administration and was dose dependent. At noon, when the levels of endogenous melatonin are low, the melatonin receptor antagonist luzindole (30 mg/kg, i.p., 30 min) did not affect the depletion of NE by alpha-MpT; however, it (1-30 mg/kg) completely antagonized the 6-chloromelatonin-induced reduction of NE depletion elicited by alpha-MpT in hypothalamus. These results suggest that activation of melatonin receptor sites in brain of C3H/HeN mouse retarded the depletion of NE elicited by alpha-MpT. At midnight, when the levels of melatonin are high, luzindole (30 mg/kg) significantly accelerated the depletion of NE by alpha-MpT in hypothalamus, but not in frontal cortex or hippocampus, suggesting activation of melatonin receptor sites by endogenous melatonin. We conclude that activation of melatonin receptor sites in C3H/HeN mouse brain by endogenous melatonin inhibits the activity of noradrenergic neurons innervating the hypothalamus.  相似文献   

19.
This study evaluated the effects of synthetic atrial natriuretic factor (ANF) on renal hemodynamics, urinary excretion of electrolytes, norepinephrine (NE), and dopamine (DA); and renal production of renin in anesthetized dogs. Following a bolus (1 micrograms/kg body weight) and infusion (0.1 microgram/kg/min) for 30 min, there was significant increase in urine flow (220 +/- 41%), glomerular filtration rate (72 +/- 14%), and urinary sodium excretion (170 +/- 34%). There was a decrease in renin secretory rate and the concentration ratio of urine NE to DA following ANF was decreased (p less than 0.05). These data suggest that ANF decreases renal production of NE and renin.  相似文献   

20.
Although plasma norepinephrine (NE) increases with age in response to a variety of submaximal adrenergic stimuli, the effect of age on plasma catecholamine levels during maximal aerobic effort and during submaximal work at a fixed percent of peak O2 consumption (VO2) is unknown. We therefore measured NE, epinephrine (E), and VO2 at rest and during graded maximal treadmill exercise in 24 healthy male volunteers (ages 22-77 yr) from the Baltimore Longitudinal Study of Aging who were rigorously screened to exclude the presence of cardiovascular disease. At rest neither heart rate (HR) nor VO2 were age related. Resting NE (pg/ml) was not age related, but resting E (pg/ml) was higher in male subjects 68-77 yr old (group III) than in those aged 22-37 (group I) or 44-55 yr (group II), P less than 0.01. Maximal HR (beats/min) showed a strong inverse relationship to age (203.5 - 0.65 age, r = -0.80, P less than 0.001). Peak VO2 in milliliters per kilogram total body weight per minute decreased with age (47.7 - 0.23 age, r = -0.71, P less than 0.001). At maximal effort both NE (P less than 0.01) and E (P less than 0.05) were higher in group III than in either of the younger groups. At submaximal work levels NE and E also increased with age, and when normalized for relative effort at loads between 45 and 80% of peak VO2 both NE and E were higher in the group III male subjects, although statistical significance was reached for NE (P less than 0.01) but not for E (P = 0.09).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号