首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For malaria transmission to occur, Plasmodium sporozoites must infect the salivary glands of their mosquito vectors. This study reports that Anopheles gambiae SRPN6 participates in a local salivary gland epithelial response against the rodent malaria parasite, Plasmodium berghei . We showed previously that SRPN6, an immune inducible midgut invasion marker, influences ookinete development. Here we report that SRPN6 is also specifically induced in salivary glands with the onset of sporozoite invasion. The protein is located in the basal region of epithelial cells in proximity to invading sporozoites. Knockdown of SRPN6 during the late phase of sporogony by RNAi has no effect on oocyst rupture but significantly increases the number of sporozoites present in salivary glands. Despite several differences between the passage of Plasmodium through the midgut and the salivary glands, this study identifies a striking overlap in the molecular responses of these two epithelia to parasite invasion.  相似文献   

2.
We describe a previously unrecognized protein family from Aedes and Anopheles mosquitoes, here named SGS proteins. There are no SGS homologues in Drosophila or other eukaryotes, but SGS presence in two mosquito genera suggests that the protein family is widespread among mosquitoes. Ae. aegypti aaSGS1 mRNA and protein are salivary gland specific, and protein is localized in the basal lamina covering the anatomical regions that are preferentially invaded by malaria sporozoites. Anti-aaSGS1 antibodies inhibited sporozoite invasion into the salivary glands in vivo, confirming aaSGS1 as a candidate sporozoite receptor. By homology to aaSGS1 we identified the complete complement of four SGS genes in An. gambiae, which were not recognized in the genome annotation. Two An. gambiae SGS genes display salivary gland specific expression like aaSGS1. Bioinformatic analysis predicts that SGS proteins possess heparin-binding domains, and have among the highest density of tyrosine sulphation sites of all An. gambiae proteins. The major sporozoite surface proteins (CS and TRAP) also bind heparin, and interact with sulphoconjugates during liver cell invasion. Thus, we speculate that sporozoite invasion of mosquito salivary glands and subsequently the vertebrate liver may share similar mechanisms based on sulphation. Phylogenomic analysis suggests that an SGS ancestor was involved in a lateral gene transfer.  相似文献   

3.
4.
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.  相似文献   

5.
6.
7.
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.  相似文献   

8.

Background

Invasion of the mosquito salivary glands by Plasmodium is a critical step for malaria transmission. From a SAGE analysis, we previously identified several genes whose expression in salivary glands was regulated coincident with sporozoite invasion of salivary glands. To get insights into the consequences of these salivary gland responses, here we have studied one of the genes, PRS1 (Plasmodium responsive salivary 1), whose expression was upregulated in infected glands, using immunolocalization and functional inactivation approaches.

Methodology/Principal Findings

PRS1 belongs to a novel insect superfamily of genes encoding proteins with DM9 repeat motifs of uncharacterized function. We show that PRS1 is induced in response to Plasmodium, not only in the salivary glands but also in the midgut, the other epithelial barrier that Plasmodium has to cross to develop in the mosquito. Furthermore, this induction is observed using either the rodent parasite Plasmodium berghei or the human pathogen Plasmodium falciparum. In the midgut, PRS1 overexpression is associated with a relocalization of the protein at the periphery of invaded cells. We also find that sporozoite invasion of salivary gland cells occurs sequentially and induces intra-cellular modifications that include an increase in PRS1 expression and a relocalization of the corresponding protein into vesicle-like structures. Importantly, PRS1 knockdown during the onset of midgut and salivary gland invasion demonstrates that PRS1 acts as an agonist for the development of both parasite species in the two epithelia, highlighting shared vector/parasite interactions in both tissues.

Conclusions/Significance

While providing insights into potential functions of DM9 proteins, our results reveal that PRS1 likely contributes to fundamental interactions between Plasmodium and mosquito epithelia, which do not depend on the specific Anopheles/P. falciparum coevolutionary history.  相似文献   

9.
10.
Gonzalez-Ceron, L., Rodriguez, M. H., Wirtz, R. A., Sina, B. J., Palomeque, O. L., Nettel, J. A., and Tsutsumi, V. 1998.Plasmodium vivax:A monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.Experimental Parasitology90, 203–211. The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells.Plasmodium vivaxCS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with otherPlasmodiumspecies, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with allP. vivaxsporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur.  相似文献   

11.
Transposon-mediated transformation was used to produce Anopheles stephensi that express single-chain antibodies (scFvs) designed to target the human malaria parasite, Plasmodium falciparum. The scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that inhibit either ookinete invasion of the midgut or sporozoite invasion of salivary glands. The scFvs that target the parasite surface, m4B7 and m2A10, were fused to an Anopheles gambiae antimicrobial peptide, Cecropin A. Previously-characterized Anopheles cis-acting DNA regulatory elements were included in the transgenes to coordinate scFv production with parasite development. Gene amplification and immunoblot analyses showed promoter-specific increases in transgene expression in blood-fed females. Transgenic mosquito lines expressing each of the scFv genes had significantly lower infection levels than controls when challenged with P. falciparum.  相似文献   

12.
A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process.  相似文献   

13.
Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies.  相似文献   

14.
The Journey of Malaria Sporozoites in the Mosquito Salivary Gland   总被引:11,自引:0,他引:11  
The life cycle of malaria parasites in the mosquito vector is completed when the sporozoites infect the salivary gland and are ready to be injected into the vertebrate host. This paper describes the fine structure of the invasive process of mosquito salivary glands by malaria parasites. Plasmodium gallinaceum sporozoites start the invasion process by attaching to and crossing the basal lamina and then penetrating the host plasma membrane of the salivary cells. The penetration process appears to involve the formation of membrane junctions. Once inside the host cells, the sporozoites are seen within vacuoles attached by their anterior end to the vacuolar membrane. Mitochondria surround, and are closely associated with, the invading sporozoites. After the disruption of the membrane vacuole, the parasites traverse the cytoplasm, attach to, and invade the secretory cavity through the apical plasma membrane of the cells. Inside the secretory cavity, sporozoites are seen again inside vacuoles. Upon escaping from these vacuoles, sporozoites are positioned in parallel arrays forming large bundles attached by multilammelar membrane junctions. Several sporozoites are seen around and inside the secretory duct. Except for the penetration of the chitinous salivary duct, our observations have morphologically characterized the entire process of sporozoite passage through the salivary gland.  相似文献   

15.
Sporozoites from all Plasmodium species analysed so far express the thrombospondin-related adhesive protein (TRAP), which contains two distinct adhesive domains. These domains share sequence and structural homology with von Willebrand factor type A-domain and the type I repeat of human thrombospondin (TSP). Increasing experimental evidence indicates that the adhesive domains bind to vertebrate host ligands and that TRAP is involved, through an as yet unknown mechanism, in the process of sporozoite motility and invasion of both mosquito salivary gland and host hepatocytes. We have generated transgenic P.berghei parasites in which the endogenous TRAP gene has been replaced by either P.falciparum TRAP (PfTRAP) or mutated versions of PfTRAP carrying amino acid substitutions or deletions in the adhesive domains. Plasmodium berghei sporozoites carrying the PfTRAP gene develop normally, are motile, invade mosquito salivary glands and infect the vertebrate host. A substitution in a conserved residue of the A-domain or a deletion in the TSP motif of PfTRAP impairs the sporozoites' ability to invade mosquito salivary glands. Notably, midgut sporozoites from these transgenic parasites are still able to infect mice. Midgut sporozoites carrying a mutation in the A-domain of PfTRAP are motile, while no gliding motility could be detected in sporozoites with a TSP motif deletion.  相似文献   

16.
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.  相似文献   

17.
The major surface protein of malaria sporozoites, the circumsporozoite protein, binds to heparan sulfate proteoglycans on the surface of hepatocytes. It has been proposed that this binding event is responsible for the rapid and specific localization of sporozoites to the liver after their injection into the skin by an infected anopheline mosquito. Previous in vitro studies performed under static conditions have failed to demonstrate a significant role for heparan sulfate proteoglycans during sporozoite invasion of cells. We performed sporozoite attachment and invasion assays under more dynamic conditions and found a dramatic decrease in sporozoite attachment to cells in the presence of heparin. In contrast to its effect on attachment, heparin does not appear to have an effect on sporozoite invasion of cells. When substituted heparins were used as competitive inhibitors of sporozoite attachment, we found that sulfation of the glycosaminoglycan chains at both the N- and O-positions was important for sporozoite adhesion to cells. We conclude that the binding of the circumsporozoite protein to hepatic heparan sulfate proteoglycans is likely to function during sporozoite attachment in the liver and that this adhesion event depends on the sulfated glycosaminoglycan chains of the proteoglycans.  相似文献   

18.
The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity.  相似文献   

19.
Eicosanoids affect the immunity of several pathogen/insect models, but their role on the Anopheles gambiae response to Plasmodium is still unknown. Plasmodium berghei-infected mosquitoes were injected with an eicosanoid biosynthesis inhibitor, indomethacin (IN), or a substrate, arachidonic acid (AA), at day 7 or day 12 post-infection (p.i.). Salivary gland invasion was evaluated by sporozoite counts at day 21 p.i. IN promoted infection upon sporozoite release from oocysts, but inhibited infection when sporozoites were still maturing within the oocysts, as observed by a reduction in the number of sporozoites reaching the salivary glands. AA treatment had the opposite effect. We show for the first time that An. gambiae can modulate parasite survival through eicosanoids by exerting an antagonistic or agonistic effect on the parasite, depending on its stage of development.  相似文献   

20.
The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号