首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Many Drosophila developmental genes contain a DNA binding domain encoded by the homeobox. This homeodomain contains a region distantly homologous to the helix-turn-helix motif present in several prokaryotic DNA binding proteins. We investigated the nature of homeodomain-DNA interactions by making a series of mutations in the helix-turn-helix motif of the Drosophila homeodomain protein Paired (Prd). This protein does not recognize sequences bound by the homeodomain proteins Fushi tarazu (Ftz) or Bicoid (Bcd). We show that changing a single amino acid at the C-terminus of the recognition helix is both necessary and sufficient to confer the DNA binding specificity of either Ftz or Bcd on Prd. This simple rule indicates that the amino acids that determine the specificity of homeodomains are different from those mediating protein-DNA contacts in prokaryotic proteins. We further show that Prd contains two DNA binding activities. The Prd homeodomain is responsible for one of them while the other is not dependent on the recognition helix.  相似文献   

7.
IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition.  相似文献   

8.
9.
The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.  相似文献   

10.
11.
Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research.  相似文献   

12.
The DNA-binding domain of the oncoprotein c-Myb consists of three imperfect tryptophan-rich repeats, R1, R2 and R3. Each repeat forms an independent mini-domain with a helix-turn-helix related motif and they are connected by linkers containing highly conserved residues. The location of the linker between two DNA-binding units suggests a function analogous to a dimerisation motif with a critical role in positioning the recognition helices of each mini-domain. Mutational analysis of the minimal DNA-binding domain of chicken c-Myb (R2 and R3), revealed that besides the recognition helices of each repeat, the linker connecting them was of critical importance in maintaining specific DNA-binding. A comparison of several linker sequences from different Myb proteins revealed a highly conserved motif of four amino acids in the first half of the linker: LNPE (L138 to E141 in chicken c-Myb R2R3). Substitution of residues within this sequence led to reduced stability of protein-DNA complexes and even loss of DNA-binding. The two most affected mutants showed increased accessibility to proteases, and fluorescence emission spectra and quenching experiments revealed greater average exposure of tryptophans which suggests changes in conformation of the proteins. From the structure of R2R3 we propose that the LNPE motif provides two functions: anchorage to the first repeat (through L) and determination of the direction of the bridge to the next repeat (through P).  相似文献   

13.
14.
The Glut1 glucose transporter is one of over 300 members of the major facilitator superfamily of membrane transporters. These proteins are extremely diverse in substrate specificity and differ in their transport mechanisms. The two most common features shared by many members of this superfamily are the presence of 12 predicted transmembrane segments and an amino acid motif, R-X-G-R-R, present at equivalent positions within the cytoplasmic loops joining transmembrane segments 2-3 and 8-9. The structural and functional roles of the arginine residues within these motifs in Glut1 were investigated by expression of site-directed mutant transporters in Xenopus oocytes followed by analyses of intrinsic transport activity and the membrane topology of mutant glycosylation-scanning reporter Glut1 molecules. Substitution of lysine residues for the cluster of 3 arginine residues in each of the 2 cytoplasmic pentameric motifs of Glut1 revealed no absolute requirement for arginine side chains at any of the 6 positions for transport of 2-deoxyglucose. However, removal of the 3 positive charges at either site by substitution of glycines for the arginines completely abolished transport activity as the result of a local perturbation in the membrane topology in which the cytoplasmic loop was aberrantly translocated into the exoplasm along with the two flanking transmembrane segments. Substitution of lysines for the arginines had no affect on membrane topology. We conclude that the positive charges in the R-X-G-R-R motif form critical local cytoplasmic anchor points involved in determining the membrane topology of Glut1. These data provide a simple explanation for the presence of this conserved amino acid motif in hundreds of functionally diverse membrane transporters that share a common predicted membrane topology.  相似文献   

15.
Sweeney MC  Wang X  Park J  Liu Y  Pei D 《Biochemistry》2006,45(49):14740-14748
Inhibitor of apoptosis (IAP) proteins regulate programmed cell death by inhibiting members of the caspase family of proteases. The X-chromosome-linked IAP (XIAP) contains three baculovirus IAP repeat (BIR) domains, which bind directly to the N-termini of target proteins including those of caspases-3, -7, and -9. In the present study, we defined the consensus sequences of the motifs that interact with the three BIR domains in an unbiased manner. A combinatorial peptide library containing four random residues at the N-terminus was constructed and screened using BIR domains as probes. We found that the BIR3 domain binds a highly specific motif containing an alanine or valine at the N-terminus (P1 position), an arginine or proline at the P3 position, and a hydrophobic residue (Phe, Ile, and Tyr) at the P4 position. The BIR2-binding motif is less stringent. Although it still requires an N-terminal alanine, it tolerates a wide variety of amino acids at P2-P4 positions. The BIR1 failed to bind to any peptides in the library. SPR analysis of individually synthesized peptides confirmed the library screening results. Database searches with the BIR2- and BIR3-binding consensus sequences revealed a large number of potential target proteins. The combinatorial library method should be readily applicable to other BIR domains or other types of protein modular domains.  相似文献   

16.
Jiang W  Puch S  Guo X  Bhavanandan VP 《IUBMB life》1999,48(6):601-605
Galectins are a distinct family of animal lectins that have a cation-independent affinity for beta-galactoside sugars and share characteristic amino acid sequences. The cDNA encoding rabbit bladder galectin-4 has been cloned and sequenced (GenBank accession no. AF091738). The deduced 328 amino acid sequence predicts a multidomain structure consisting of an N-terminal peptide (19 residues) and two carbohydrate recognition domains (130 residues each) connected by a linker region (49 residues). Comparison of rabbit galectin-4 with related proteins reveals that two peptide motifs, M-A-F/Y-V-P-A-P-G-Y-Q-P-T-Y-N-P-T-L-P-Y in the N terminus and A-F-H-F-N-P-R-F-D-G-W-D-K-V-V-F in the first carbohydrate recognition domain are highly conserved in human, pig, rat, and mouse galectin-4 as well as in mouse galectin-6. The two peptide motifs are proposed here as the signature sequences to identify new members of the galectin-4 subfamily.  相似文献   

17.
18.
19.
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号