首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A double-headed nucleoside wherein an additional thymine is attached to the 2′-O-position of uridine via a methylene linker is prepared and incorporated into oligonucleotides. With single incorporations of the modified nucleotide monomer, these oligonucleotides form duplexes with the complementary DNA sequences which are thermally less stable as compared to the unmodified duplexes. However, stabilization of bulged duplexes or three way junctions is observed. A cross-strand interaction between two additional thymines is also seen in a DNA-duplex, when specifically introduced in a so-called (+1)-zipper motif, however, much weaker than obtained with the corresponding analogue with the methylene linker directly attached to the 2′-C-position. This demonstrates that the ability to act as a compressed dinucleotide is unique for the latter and due to its perfect preorganization of the additional base in the duplex core.  相似文献   

2.
Double-headed nucleotide monomers are capable of condensing the genetic information of DNA. Herein, a double-headed nucleotide with two cytosine bases (CC) is constructed. The additional cytosine is connected through a methylene linker to the 2′-position of arabinocytidine. The nucleotide is incorporated into oligonucleotides and its effect on duplex stability is studied. For single incorporations, a thermal stabilization of 4.0?°C is found as compared to the unmodified duplex and it is shown that both nucleobases of CC participate in Watson-Crick base pairing. In combination with the previously published UT monomer, it is also shown that multiple incorporations are tolerated. For instance, a 16-mer sequence is targeted by a 13-mer oligonucleotide by using one CC and two UT monomers without compromising the overall duplex stability. Finally, the potential of double-headed nucleotides in triplex-forming oligonucleotides is studied, however, with the conclusion that the present design is not well-suited for this function.  相似文献   

3.
The syntheses of two nucleosides with additional nucleobases in the 2′-position are presented. The nucleosides have two- and one-carbon linkers to the additional nucleobase, respectively. The two nucleosides are synthesized from different strategies. The nucleoside with two carbons in the linker has been incorporated into oligonucleotides and showed stabilization of a tree-way junction.  相似文献   

4.
A series of novel nucleoside 5′-triphosphates and phosphoramidites containing alkyne or amino groups for the postsynthetic functionalization of nucleic acids were designed and synthesized. For this purpose, the new 3-aminopropoxypropynyl linker group was used. It contains two alternative functional capabilities: an amino group for the reaction of amino–alkynyl-modified oligonucleotides with corresponding activated esters and an alkyne group for the copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. It was shown that a variety of methods of the attachment of the new linker can be used to synthesize a diversity of modified pyrimidine nucleosides.  相似文献   

5.
A novel series of 6-methylpurine nucleoside derivatives with substitutions at 5′-position have been synthesised. These compounds bear a 5′-heterocycle such as triazole or a imidazole with a two carbon chain, and an ether, thio ether or amine. To extend the SAR study of 2-fluoroadenine and 6-methyl purine nucleosides, their corresponding α–linker nucleosides with l-xylose and l-lyxose were also synthesized. All of these compounds have been evaluated for their substrate activity with E. coli PNP.  相似文献   

6.
The syntheses of two nucleosides with additional nucleobases in the 2'-position are presented. The nucleosides have two- and one-carbon linkers to the additional nucleobase, respectively. The two nucleosides are synthesized from different strategies. The nucleoside with two carbons in the linker has been incorporated into oligonucleotides and showed stabilization of a tree-way junction.  相似文献   

7.
Tert-butyldiphenylsilyl (TBDPS) was testified to be an appropriate orthogonal protecting group for novel 7-hydroxyl-functionalized 8-aza-7-deaza-2′-deoxyadenosine analogues. It was stable in partial and complete hydrogenation reactions used for the different linker preparation. The corresponding phosphoramidites and hydroxyl-functionalized oligodeoxynucleotides were synthesized and identified. The thermal effect of the hydroxyl group with different linkers on DNA duplexes was evaluated. It provided a feasible strategy for the preparation of hydroxyl-functionalized DNAs for the nucleic acid research.  相似文献   

8.
Abstract

Acridine-modified oligodeoxyribonucleotides (ODNs) at the C5-position of a 2′-deoxyuridine via different lengths of linker arms were synthesized. Reaction of 5-(N-aminoalkyl)carbamoylmethyl-2′-deoxyuridines with 9-phenoxyacridine gave the acridine-modified 2′-deoxyuridines which were incorporated into ODNs. The duplexes containing the acridine-modified strands and their complementary DNA or RNA were thermally more stable than that containing the unmodified strand. Thermal stability of the duplexes of the modified ODNs varied depending on the length of the linker arms.

  相似文献   

9.
The chemical modification of the 2′-O-position of nucleosides proved to be of great importance for the RNA stability. Greater stability of RNA duplexes allows a longer half life in the cell and, therefore, a better effect of RNA Interference. Here we investigated the synthesis of 2′-O-aminoethyl adenosine as a cationic modified building block.  相似文献   

10.
A series of novel nucleoside 5'-triphosphates and phosphoramidites containing alkyne or amino groups for the postsynthetic functionalization of nucleic acids were designed and synthesized. For this purpose, the new 3-aminopropoxypropynyl linker group was used. It contains two alternative functional capabilities: an amino group for the reaction of amino-alkynyl-modified oligonucleotides with corresponding activated esters and an alkyne group for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. It was shown that a variety of methods of the attachment of the new linker can be used to synthesize a diversity of modified pyrimidine nucleosides.  相似文献   

11.
Oligonucleotide analogues were synthesized whose internucleoside linker contains an amide bond and a methylamino group (C3′-NH-CO-CH2-N(CH3)-C5′). Melting curves for duplexes formed by modified oligonucleotides and natural oligonucleotides complementary to them were measured, and the melting temperatures and thermodynamic parameters of duplex formation were calculated. The introduction of one modified dinucleoside linker into the oligonucleotide only slightly decreases the melting temperatures of these duplexes compared with unmodified ones. The CD spectra of modified duplexes were studied, and their spatial structures are discussed.  相似文献   

12.
A study of C-nucleophilic substitution at the C4-position on pyrimidine and C6-position on 2′-deoxyguanosine to produce novel nucleosides is presented with the spectroscopic properties of their respective substitution products. C4-(1,2,4-triazol-1-yl) pyrimidine nucleosides 1 were treated with nitroalkanes, malononitrile, acetylacetone, ethyl nitroacetate, acetoacetate and cyanoacetate at 100°C in dioxane in the presence of DBU resulting in the production of novel nucleosides 2–11. To explore the application of this methodology to purine chemistry, this approach was used to produce novel analogs from 2′-deoxyguanosine. We found that the triazolo derivative 12 undergoes C-nucleophilic substitution with nitromethane, malononitrile, acetylacetone, ethyl nitroacetate and cyanoacetate in the presence of potassium carbonate (K2CO3) in DMF at 100°C to give novel nucleosides 13–7.  相似文献   

13.
Abstract

RNA exhibits a higher structural diversity than DNA and is an important molecule in biology of life. It shows a number of secondary structures such as duplexes, hairpin loops, bulges, internal loops etc. However, in natural RNA, bases are limited to the four predominant structures U, C, A, and G and so the number of compounds that can be used for investigation of parameters of base stacking, base pairing and hydrogen bond, is limited. We synthesized different fluoromodifications of RNA building blocks: 1′-deoxy-1′-(2,4,6-trifluorophenyl)-ß-D-ribofuranose (F), 1′-deoxy-1′-(2,4,5-trifluorophenyl)-ß-D-ribofuranose (M) and 1′-deoxy-1′-(5-trifluoromethyl-1H-benzimidazol-1-yl)-ß-D-ribofuranose (D). Those amidites were incorporated and tested in a defined A, U- rich RNA sequence (12-mer, 5′-CUU UUC XUU CUU-3′ paired with 3′-GAA AAG YAA GAA-5’) (Schweitzer, B.A.; Kool, E.T. Aromatic nonpolar nucleosides as hydrophobic isosters of pyrimidine and purine nucleosides. J. Org. Chem. 1994, 59, 7238 pp.). Only one position was modified, marked as X and Y respectively. UV melting profiles of those oligonucleotides were measured.  相似文献   

14.
ABSTRACT

The synthesis of 2,2′-bipyridinyl-2′-deoxyuridine metal-chelator nucleosides (Bipy-dU) with either ethynyl or ethylenyl linkers was now been accomplished. These new nucleosides will permit the construction of a number of corresponding metallo-DNA conjugates where many types of metals can be complexed to the 2,2′-bipyridinyl chelator group and the resulting metallo-dU conjugates incorporated into DNA oligonucleotides. Additionally this paper also reports the synthesis of a di-N-alkylated bipyridinediiumyl-2′-deoxyuridine nucleoside (Bipy2+-dU) with an ethylenyl linker. The Bipy2+-dU nucleoside was found to decompose under basic conditions precluding its use in standard automated DNA-synthesis by the phosphoramidite method. No such restrictions apply to the two Bipy-dU nucleosides reported here for use as metal chelators.  相似文献   

15.
A short route to pyrimidine locked nucleosides has been developed for their incorporation in triplex forming oligonucleotides (TFO). Compared to oligonucleotides built with standard nucleosides, the modified TFOs containing 3'-endo blocked residues formed, with their corresponding DNA duplexes, more stable triple helix systems, an effect which might be ascribed to the 3'-endo pucker of the modified nucleoside residues.  相似文献   

16.
The rate limiting reactions of nucleotide synthesis are modulated by intracellular fluctuations of nucleoside triphosphate concentrations. This topic has been mostly studied at the level of the de novo nucleotide synthesis from simple precursors. However, there are districts, such as brain, which rely more heavily on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides. This raises the following question: how do these districts maintain the right balance between the purine and pyrimidine pools? We believe that it is now safe to state that a cross talk exists between the extra- and intracellular metabolism of purine and pyrimidine nucleosides in the brain. The extracellular space is the major site of nucleoside generation through successive dephosphorylations of released triphosphates, whereas brain cytosol is the major site of multiple phosphorylations of uptaken nucleosides at their 5′-position. Modulation of both extracellular nucleoside generation by membrane bound ectonucleotidases, and intracellular nucleoside phosphorylation by cytosolic kinases might contribute to maintain the right extra- and intracellular purine and pyrimidine nucleotide balance in the brain.  相似文献   

17.
Oligodeoxyribonucleotides (ONs) containing two incorporations of 2 ′-N-(pyren-1-yl)acetyl-2 ′-amino-α-L-LNA monomer Y are sensitive probes for detection of single nucleotide polymorphisms (SNP) in DNA. In addition, the ability of ONs containing pyrene-functionalized 2 ′-amino-α-L-LNA monomers ( W-Z ) to stabilize duplexes with an abasic site is demonstrated.  相似文献   

18.
19.
Abstract

Trifluoromethane sulfonic anhydride has been used for the inversion of configuration at the 3′-position of 2′-deoxypurine nucleosides, for the modification of the base moiety of purine and pyrimidine nucleosides, for nucleophilic substitution in the sugar moiety, for the synthesis of O2,3′-cyclothymidine and for sugar-base condensation reactions. Reaction can be carried out under very mild conditions. The conditions for these reactions are quite different so that a good selectivity can be obtained when different reactive groups are present.  相似文献   

20.
DNA binding compounds, such as benzo[e] (BePI) and benzo[g] pyridoindole (BgPI) derivatives, exhibit preferential stabilization of triple helices. We report here the synthesis of a series of pyrimidine triple-helix-forming oligo-2'-deoxyribonucleotides conjugated with these molecules. BePI was coupled to the 5-position of 2'-deoxyuridine via two linkers of different sizes attached to its 11-position and placed at either the 5'-end, inside the sequence, or at both the 5'-end and the internal positions using periodate oxidation of a diol-containing oligonucleotide followed by reductive coupling with amino-linked BePI. The same BePI derivatives were also linked to the oligonucleotide chain via internucleotidic phosphorothiolate or phosphoramidate linkages. A mixture of diastereoisomers was prepared as well as separate pure Rp and Sp isomers. A BePI derivative, with two different linkers attached to its 3-position, and BgPI derivatives were also linked to the 5-position of a 2'-deoxyuridine located at either the 5'-end or inside the sequence, as well as to the beta- anomeric position of an additional 2'- deoxyribose placed inside the sequence. The binding properties of these oligonucleotide-benzopyridoindoles conjugates with their double-stranded DNA target was studied by absorption spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号