首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Interactions of oligonucleotides comprising (1-beta-D-2'-deoxy-threo-pentafuranosyl)thymine and (1-beta-D-2'-deoxy-threo-pentafuranosyl)cytosine residues (oligodeoxyxylonucleotides or OXNs) with complementary single-stranded DNA fragments were investigated. Using nondenaturing gel electrophoresis, footprinting, and melting assays, pyrimidine OXNs were shown to form triplexes with the purine DNA template, which are stable at neutral pH and comparable in heat stability with the corresponding natural polypurine-polypyrimidine DNA duplexes. In such triplexes, the N3 of cytosines in one of the OXNs are protonated. As revealed by CD spectroscopy in the 210-340 nm range, the form of the triple helix depends on the nucleotide composition and sequence of the DNA template, and is intermediate between A and B.  相似文献   

2.
Ivanov  S. A.  Alekseev  Ya. I.  Gottikh  M. B. 《Molecular Biology》2002,36(1):131-139
Interactions of oligonucleotides comprising (1--D-2"-deoxy-threo-pentafuranosyl)thymine and (1--D-2"-deoxy-threo-pentafuranosyl)cytosine residues (oligodeoxyxylonucleotides or OXNs) with complementary single-stranded DNA fragments were investigated. Using nondenaturing gel electrophoresis, footprinting, and melting assays, pyrimidine OXNs were shown to form triplexes with the purine DNA template, which are stable at neutral pH and comparable in heat stability with the corresponding natural polypurine–polypyrimidine DNA duplexes. In such triplexes, the N3 of cytosines in one of the OXNs are protonated. As revealed by CD spectroscopy in the 210–340 nm range, the form of the triple helix depends on the nucleotide composition and sequence of the DNA template, and is intermediate between A and B.  相似文献   

3.
Different helical conformations of DNA (D), RNA (R), and DNA.RNA (DR) hybrid double and triple helices have been detected using affinity cleavage analysis. Synthetic methods were developed to attach EDTA.Fe to a single nucleotide on RNA as well as DNA oligonucleotides. Cleavage patterns generated by a localized diffusible oxidant in the major groove on the pyrimidine strand of four purine.pyrimidine double helices consisting of all DNA, all RNA, and the corresponding hybrids reveal that the relative cleavage intensity shifts to the 5' end of the purine strand increasingly in the order: DD < DR < RD < RR. These results are consistent with models derived from structural studies. In six pyrimidine.purine.pyrimidine triple helices, the altered cleavage patterns of the Watson-Crick pyrimidine strands reveal at least two conformational families: (i) D + DD, R + DD, D + DR, and R + DR and (ii) R + RD and R + RR.  相似文献   

4.
Exclusion of RNA strands from a purine motif triple helix.   总被引:5,自引:5,他引:0       下载免费PDF全文
Research concerning oligonucleotide-directed triple helix formation has mainly focused on the binding of DNA oligonucleotides to duplex DNA. The participation of RNA strands in triple helices is also of interest. For the pyrimidine motif (pyrimidine.purine.pyrimidine triplets), systematic substitution of RNA for DNA in one, two, or all three triplex strands has previously been reported. For the purine motif (purine.purine.pyrimidine triplets), studies have shown only that RNA cannot bind to duplex DNA. To extend this result, we created a DNA triple helix in the purine motif and systematically replaced one, two, or all three strands with RNA. In dramatic contrast to the general accommodation of RNA strands in the pyrimidine triple helix motif, a stable triplex forms in the purine motif only when all three of the substituent strands are DNA. The lack of triplex formation among any of the other seven possible strand combinations involving RNA suggests that: (i) duplex structures containing RNA cannot be targeted by DNA oligonucleotides in the purine motif; (ii) RNA strands cannot be employed to recognize duplex DNA in the purine motif; and (iii) RNA tertiary structures are likely to contain only isolated base triplets in the purine motif.  相似文献   

5.
The CD spectra of a number of helical complexes formed by purine monomers and complementary pyrimidine polyribonucleotides have been observed over the range 200–400 nm. Each of these spectra is quite similar to that of the corresponding polymer–polymer helix. The spectra are evidently determined by the geometry of the asymmetric array of bases, largely unperturbed by the ribose–phosphate backbone. The helix structure (A-form), on the other hand, is determined by the backbone of the pyrimidine homopolymer. Data on the monomer–polymer complexes support the conclusion that the CD spectra of ribohomopolymer helices depend primarily on interastrand interactions of the same transition within a given base and are relatively unaffected by transitions of the complementary base.  相似文献   

6.
Introduction of the bulky 8-bromo substituent into adenine residues of polynucleotides has strikingly different consequences in the deoxy- and ribopolynucleotide series. Poly(r8BrA) was found in earlier studies to form a very stable double-helical self-structure but not to undergo interaction with potentially complementary polynucleotides. We find that poly(d8BrA), in contrast, does not form an ordered self-structure in 0.1 M Na+ but appears to exist as an electrostatically expanded rigid rod with unusual circular dichroism (CD) properties at very low ionic strength. The deoxy polymer, moreover, readily forms double helices with either deoxy or ribo pyrimidine polynucleotides, studied by UV, CD, and IR spectroscopy. These complexes are destabilized, relative to those formed by poly(dA), possibly because energy is needed to convert the purine residues from a more stable syn to an anti conformation, required for heteroduplex formation. The CD spectrum of (d8BrA)n X (dT)n is similar to that of B DNA. The deoxy-ribo hybrids (d8BrA)n X (rU)n and (d8BrA)n X (rBrU)n have CD spectra resembling those of A DNA or RNA. Unlike other deoxy-deoxy pairs (d8BrA)n X (dBrU)n, however, has a CD spectrum resembling RNA and other helices having the A form.  相似文献   

7.
Abstract

We studied the influence of different 2′-OMe-RNA and DNA strand combinations on single strand targeted foldback triplex formation in the Py.Pu:Py motif using ultraviolet (UV) and circular dichroism (CD) spectroscopy, and molecular modeling. The study of eight combinations of triplexes (D D:D, R* D:D, D D:R*, R* D:R*, D R:D, R* R:D, DR:R*, and R*-R:R*; where the first, middle, and last letters stand for the Hoogsteen Pyrimidine, Watson-Crick [WC] purine and WC pyrimidine strands, respectively, and D, R and R* stand for DNA, RNA and 2′-OMe-RNA strands, respectively) indicate more stable foldback triplex formation with a DNA purine strand than with an RNA purine strand. Of the four possible WC duplexes with RNA/DNA combinations, the duplex with a DNA purine strand and a 2′-O-Me-RNA pyrimidine strand forms the most thermally stable triplex, although its thermal stability is the lowest of all four duplexes. Irrespective of the duplex combination, a 2′-OMe-RNA Hoogsteen pyrimidine strand forms a stable foldback triplex over a DNA Hoogsteen pyrimidine strand confirming the earlier reports with conventional and circular triplexes. The CD studies suggest a B-type conformation for an all DNA homo-foldback triplex (D.D.D), while hetero-foldback triplex spectra suggest intermediate conformation to both Atype and B-type structures. A novel molecular modeling study has been carried out to understand the stereochemical feasibility of all the combinations of foldback triplexes using a geometric approach. The new approach allows use of different combinations of chain geometries depending on the nature of the chain (RNA vs. DNA).  相似文献   

8.
Differential scanning calorimetric (DSC), circular dichroism (CD) and molecular mechanics studies have been performed on two triple helices of DNA. The target duplex consists of 16 base pairs in alternate sequence of the type 5′-(purine)m(pyrimidine)m-3′. In both the triplexes, the third oligopyrimidine strand crosses the major groove at the purine–pyrimidine junction, with a simultaneous binding of the adjacent purine tracts on alternate strands of the Watson–Crick duplex. The switch is ensured by a non-nucleotide linker, the 1,2,3 propanetriol residue, that joins two 3′–3′ phosphodiester ends. The third strands differ from each other for a nucleotide in the junction region. The resulting triple helices were termed 14-mer-PXP and 15-mer-PXP (where P=phosphate and X=1,2,3-propanetriol residue) according to the number of nucleotides that compose the third strand. DSC data show two independent processes: the first corresponding to the dissociation of the third strand from the target duplex, the second to the dissociation of the double helix in two single strands. The two triple helices show the same stability at pH 6.6. At pH 6.0, the 15-mer-PXP triplex is thermodynamically more stable than the 14-mer-PXP triplex. Thermodynamic data are discussed in relation to structural models. The results are useful when considering the design of oligonucleotides that can bind in an antigene approach to the DNA for therapeutic purposes.  相似文献   

9.
Recently, P.A. Beal and P.B. Dervan, expanding on earlier observations by others, have established the formation of purine.purine.pyrimidine triple helices stabilized by G.GC, A.AT and T.AT base triples where the purine-rich third strand was positioned in the major groove of the Watson-Crick duplex and anti-parallel to its purine strand. The present nuclear magnetic resonance (n.m.r.) study characterizes the base triple pairing alignments and strand direction in a 31-mer deoxyoligonucleotide that intramolecularly folds to generate a 7-mer (R/Y-)n.(R+)n(Y-)n triplex with the strands linked by two T5 loops and stabilized by potential T.AT and G.GC base triples. (R and Y stand for purine and pyrimidine, respectively, while the signs establish the strand direction.) This intramolecular triplex gives well-resolved exchangeable and non-exchangeable proton spectra with Li+ as counterion in aqueous solution. These studies establish that the T1 to C7 pyrimidine and the G8 to A14 purine strands are anti-parallel to each other and align through Watson-Crick A.T and G.C pair formation. The T15 to G21 purine-rich third strand is positioned in the major groove of this duplex and pairs through Hoogsteen alignment with the purine strand to generate T.AT and G.GC triples. Several lines of evidence establish that the thymidine and guanosine bases in the T15 to G21 purine-rich third strand adopt anti glycosidic torsion angles under conditions where this strand is aligned anti-parallel to the G8 to A14 purine strand. We have also recorded imino proton n.m.r. spectra for an (R-)n.(R+)n(Y-)n triplex stabilized by G.GC and A.AT triples through intramolecular folding of a related 31-mer deoxyoligonucleotide with Li+ as counterion. The intramolecular purine.purine.pyrimidine triplexes containing unprotonated G.GC, A.AT and T.AT triples are stable at basic pH in contrast to pyrimidine.purine.pyrimidine triplexes containing protonated C+.GC and T.AT triples, which are only stable at acidic pH.  相似文献   

10.
We have studied the effect of a 2',5'-RNA third strand backbone on the stability of triple helices with a 'pyrimidine motif' targeting the polypurine strand of duplex DNA, duplex RNA and DNA/RNA hybrids. Comparative experiments were run in parallel with DNA and the regioisomeric RNA as third strands adopting the experimental design of Roberts and Crothers. The results reveal that 2',5'-RNA is indeed able to recognize double helical DNA (DD) and DNA (purine):RNA (pyrimidine) hybrids (DR). However, when the duplex purine strand is RNA and the duplex pyrimidine strand is DNA or RNA (i.e. RD or RR), triplex formation is not observed. These results exactly parallel what is observed for DNA third strands. Based on T m data, the affinities of 2',5'-RNA and DNA third strands towards DD and DR duplexes were similar. The RNA third strand formed triplexes with all four hairpins, as previously demonstrated. In analogy to the arabinose and 2'-deoxyribose third strands, the possible C2'- endo pucker of 2',5'-linked riboses together with the lack of an alpha-2'-OH group are believed to be responsible for the selective binding of 2',5'-RNA to DD and DR duplexes, over RR and RD duplexes. These studies indicate that the use of other oligonucleotide analogues will prove extremely useful in dissecting the contributions of backbone and/or sugar puckering to the recognition of nucleic acid duplexes.  相似文献   

11.
G M Hashem  J D Wen  Q Do    D M Gray 《Nucleic acids research》1999,27(16):3371-3379
The pyr*pur.pyr type of nucleic acid triplex has a purine strand that is Hoogsteen-paired with a parallel pyrimidine strand (pyr*pur pair) and that is Watson-Crick-paired with an antiparallel pyrimidine strand (pur.pyr pair). In most cases, the Watson-Crick pair is more stable than the Hoogsteen pair, although stable formation of DNA Hoogsteen-paired duplexes has been reported. Using oligomer triplexes of repeating d(AG)12 and d(CT)12 or r(CU)12 sequences that were 24 nt long, we found that hybrid RNA*DNA as well as DNA*DNA Hoogsteen-paired strands of triplexes can be more stable than the Watson-Crick-paired strands at low pH. The structures and relative stabilities of these duplexes and triplexes were evaluated by circular dichroism (CD) spectroscopy and UV absorption melting studies of triplexes as a function of pH. The CD contributions of Hoogsteen-paired RNA*DNA and DNA*DNA duplexes were found to dominate the CD spectra of the corresponding pyr*pur.pyr triplexes.  相似文献   

12.
DNA triple helices offer exciting perspectives toward oligonucleotide-directed control of gene expression. Oligonucleotide analogues are routinely used with modifications in either the backbone or the bases to form more stable triple-helical structures or to prevent their degradation in cells. In this article, different chemical modifications are tested in a model system, which sets up a competition between the purine and pyrimidine motifs. For most modifications, the DeltaH degrees of purine triplex formation is close to zero, implying a nearly temperature-independent affinity constant. In contrast, the pyrimidine triplex is strongly favored at lower temperatures. The stabilization induced by modifications previously known to be favorable to the pyrimidine motif was quantified. Interestingly, modifications favorable to the GT motif (propynyl-U and dU replacing T) were also discovered. In a system where two third strands compete for triplex formation, replacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This purine-to-pyrimidine triplex conversion depends on the chemical nature of the triplex-forming strands and the stability of the corresponding triplexes.  相似文献   

13.
A new class of fluorescent nucleotide analogs which contain the fluorophore 1-aminonaphthalene-5-sulfonate attached via a gamma-phosphoamidate bond has been synthesized. Both the purine and pyrimidine analogs have fluorescence emission maxima at 460 nm. Cleavage of the alpha-beta-phosphoryl bond produces change in both the absorption and fluorescence emission spectra. The fluorescence of the pyrimidine analogs is quenched; cleavage of the alpha-beta-phosphoryl bond of the UTP analog produces about a 14-fold increase in fluorescence intensity at 500 nm. Under the same conditions the fluorescence of the CTP analog increases about 8-fold, whereas the fluorescence of the purine analogs shows only a slight change. These derivatives are good substrates for Escherichia coli RNA polymerase with only slightly increased Km values and with Vmax values about 50 to 70% that of the normal nucleotides. They are used less efficiently by wheat germ RNA polymerase II. The ATP analog can be used by E. coli RNA polymerase to initiate RNA chains.  相似文献   

14.
15.
16.
Single-strand DNA triple-helix formation   总被引:4,自引:0,他引:4  
R H?ner  P B Dervan 《Biochemistry》1990,29(42):9761-9765
Chemical modification studies provide evidence that single-stranded oligodeoxyribonucleotides can form stable intrastrand triple helices. Two oligonucleotides of opposite polarity were synthesized, each composed of a homopurine-homopyrimidine hairpin stem linked to a pyrimidine sequence which is capable of folding back on the hairpin stem and forming specific Hoogsteen hydrogen bonds. Using potassium permanganate as a chemical modification reagent, we have found that two oligodeoxyribonucleotides of sequence composition type 5'-(purine)8(N)4(pyrimidine)8(N)6(pyrimidine)8-3' and 5'-(pyrimidine)8N6(pyrimidine)8N4(purine)8-3' undergo dramatic structural changes consistent with intrastrand DNA triple-helix formation induced by lowering the pH or raising the Mg2+ concentration. The intrastrand DNA triple helix is sensitive to base mismatches.  相似文献   

17.
The synthesis and properties of triplex-forming DNA clamps carrying 8-aminopurines are described. The stability of triple helices is enhanced by replacing purine bases with 8-aminopurine residues. These enhanced binding properties are used for the specific capture of polypyrimidine RNA/DNA sequences of interest.  相似文献   

18.
The synthesis and properties of triplex-forming DNA clamps carrying 8-aminopurines are described. The stability of triple helices is enhanced by replacing purine bases with 8-aminopurine residues. These enhanced binding properties are used for the specific capture of polypyrimidine RNA/DNA sequences of interest.  相似文献   

19.
Purine and pyrimidine nucleotides play critical roles in DNA and RNA synthesis as well as in membrane lipid biosynthesis and protein glycosylation. They are necessary for the development and survival of mature T lymphocytes. Activation of T lymphocytes is associated with an increase of purine and pyrimidine pools. However, the question of how purine vs pyrimidine nucleotides regulate proliferation, cell cycle, and survival of primary T lymphocytes following activation has not yet been specifically addressed. This was investigated in the present study by using well-known purine (mycophenolic acid, 6-mercaptopurine) and pyrimidine (methotrexate, 5-fluorouracil) inhibitors, which are used in neoplastic diseases or as immunosuppressive agents. The effect of these inhibitors was analyzed according to their time of addition with respect to the initiation of mitogenic activation. We showed that synthesis of both purine and pyrimidine nucleotides is required for T cell proliferation. However, purine and pyrimidine nucleotides differentially regulate the cell cycle since purines control both G(1) to S phase transition and progression through the S phase, whereas pyrimidines only control progression from early to intermediate S phase. Furthermore, inhibition of pyrimidine synthesis induces apoptosis whatever the time of inhibitor addition whereas inhibition of purine nucleotides induces apoptosis only when applied to already cycling T cells, suggesting that both purine and pyrimidine nucleotides are required for survival of cells committed into S phase. These findings reveal a hitherto unknown role of purine and pyrimidine de novo synthesis in regulating cell cycle progression and maintaining survival of activated T lymphocytes.  相似文献   

20.
Based upon a stereochemical guideline, two topologically distinct types of helicalduplexes have been deduced for a polynucleotide duplex with alternating purine pyrimidine sequence (PAPP): (a) right-handed uniform (RU) helix and (b) left-handed zig-zag (LZ) helix. Both structures have trinucleoside diphosphate as the basic unit wherein the purine pyrimidine fragment has a different conformation from the pyrimidine-purine fragment. Thus, RU and LZ helices represent two different classes of sequence-dependent molecular conformations for PAPP. The conformationalf eatures of an RU helix of PAPP in B-form and three LZ-helices for B-, D- and Z-forms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号