首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report some properties of Protein PA which has been isolated from the soluble fraction of a chlB mutant after anaerobic growth in the presence of KNO3. This protein has been identified by its capacity to reactivate nitrate reductase present in the soluble fraction of a chlA mutant by the complementation process. The presence of active Protein PA in the chlB mutant is independent of the presence of oxygen or of nitrate during growth. In contrast, the addition of sodium tungstate to the growth medium leads to the formation of inactive Protein PA which is not able to activate nitrate reductase in the chlA-soluble extract by complementation. Inactive Protein PA has been quantitated immunologically. The partial purification of Protein PA has been achieved from various chlorate-resistant mutants (chlA-chlG). The establishment of particular complementation systems comprising the soluble extracts of chlA or chlB mutants and partially purified Protein PA from soluble fractions of different chlorate-resistant mutants, has allowed the quantitative estimation of this protein. The analysis by 'rocket immunoelectrophoresis' using an antiserum specific for Protein PA has shown that inactive Protein PA is present in approximately equivalent amounts in the chlA, chlE, chlG and chlD mutants.  相似文献   

2.
The reconstitution of nitrate reductase activity in mixtures of cytoplasmic fractions from the chlorate-resistant mutants chlA, B, C, and E which are lacking this activity was investigated, and the membrane-like particulate material which formed during this reconstitution was analyzed by polyacrylamide gel electrophoresis. When chlA and chlB extracts are incubated together, the cytoplasmic membrane proteins present in the particles which are formed are contributed by both mutants, and the proteins are essentially the same as the proteins in the cytoplasmic membrane fractions of the two mutants. Identical amounts of protein become particulate when cytoplasmic extracts of any of the mutant strains or wild-type strains are incubated at 32 C either singly or in mixtures, and the formation of particulate material does not appear to be a consequence of nitrate reductase reconstitution. Experiments with wild-type strains indicate that the membrane proteins in the cytoplasmic extract are derived from the cytoplasmic membrane during cell breakage. Reconstitution experiments involving various combinations of preincubated and unincubated extracts of the mutants have allowed a preliminary identification of three types of components which are necessary for the formation of active nitrate reductase: (i) a soluble factor present only in extracts from induced chlB; (ii) a different soluble factor which is missing in chlB but is present in extracts from wild-type, chlA, chlC, and chlE; and (iii) a complex including the nitrate reductase protein which is inactivated by preincubation of the mutant extracts.  相似文献   

3.
The isolation and purification of a protein which is the presumed product of the chlA gene has been achieved. This protein, which we have named Protein PA, has been isolated from the soluble fraction of a chlB mutant. The protein was identified by its ability to activate nitrate reductase (EC.1.7.99.4) when mixed with a soluble fraction derived from a chlA mutant. The protein has a molecular weight of about 72 000 and is composed of a single polypeptide chain. Antiserum specific for Protein PA has been produced. Removal of Protein PA from the soluble fraction of chlB mutant by immunoprecipitation with this antiserum leads to the loss of the ability of the preparation to activate nitrate reductase when mixed with a soluble fraction from a chlA mutant. Protein PA, therefore, performs an essential but as yet undefined role in the activation process. Employing this antiserum Protein PA could be quantified by rocket immunoelectrophoretic analysis. The activity of the isolated Protein PA is low, since comparatively large amounts of Protein PA are required to activate the nitrate reductase present in the soluble fraction of the chlA mutant. The mixing of Protein PA with the chlA mutant soluble fraction leads to activation of nitrate reductase in both a soluble and a membranous form, as is the case when the complete soluble fraction of the chlB mutant is used in place of Protein PA. After activation, however, only a small proportion (15%) of the Protein PA is associated with the newly formed membranous material.  相似文献   

4.
Chlorate-resistant mutants are pleiotropically defective in molybdoenzyme activities. The inactive derivative of the molybdoenzyme, respiratory nitrate reductase (nitrite: (acceptor) oxidoreductase, EC 1.7.99.4), which is present in cell-free extracts of chlA mutants can be activated by addition of purified protein PA, the presumed active product of the chlA+ locus, but the activity of the purified protein PA is low, since comparatively large amounts of protein PA are required for the activation. Addition of 10 mM tungstate to the growth medium of a chlBchlC double mutant leads to inactivation of both the molybdenum cofactor and protein PA. Protein PA prepared from such cells was unable to potentiate the in vitro activation of nitrate reductase present in the soluble fraction of a chlA mutant. Quantitation of inactive protein PA was determined immunologically using protein PA-specific antiserum. When a heat-treated extract of a wild-type strain was added to purified protein PA or to the supernatant fraction of a chlBchlC double mutant grown with tungstate, a large stimulation in the ability of these preparations to activate chlA nitrate reductase was found. We equate the activator of protein PA with molybdenum cofactor because: (1) both are absent from heated extracts of tungstate-grown chlBchlC double mutant and cofactor defective chlA and chlE mutants; (2) both are present in heated extracts of wild-type strain; and (3) they behave identically on molecular-sieve columns.  相似文献   

5.
Three molybdoenzymes, nitrate reductase, formate benzyl-viologen oxidoreductase and trimethylamine-N-oxide reductase which form part of different systems, have been studied in a parental strain of Escherichia coli K12. When the organism is grown in the presence of 10 mM tungstate, these three enzymes are present in an inactive form which may be activated in vivo by the addition of 1 mM sodium molybdate. The mixing of soluble fractions from chlA and chlB mutants grown under the appropriate conditions leads to the activation of nitrate reductase, formate benzyl-viologen oxidoreductase and trimethylamine-N-oxide reductase. The activation of each enzyme is maximal when the mutants are grown under conditions that lead to the induction of that enzyme in the wild-type strain. The employment of purified proteins, the association factor FA and the Protein PA, which are presumed to be the products of the chlA and chlB genes, has shown that these proteins are responsible for the activation of the three enzymes during the complementation process.  相似文献   

6.
Acid-treated extracts of Escherichia coli were tested for their ability to restore reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase activity to an extract of a Neurospora nit-1 mutant which produces a defective enzyme. With wild-type E. coli this complementation activity was more readily detected in the cytoplasmic fraction, although the nitrate reductase activity was found primarily in the particulate fraction. chlB mutants of E. coli appeared to have more complementation activity in the cytoplasm than was observed in the wild type, but no activity in the particulate fraction. The other chl mutants had little or no activity in either fraction. These results suggest that chlB mutants can produce a component or cofactor which is missing in the other mutants and in the Neurospora mutant, but cannot transfer it to the nitrate reductase enzyme.  相似文献   

7.
Abstract The chlorate resistance mutants are pleitropically defective in the activity of all molybdoenzymes in Escherichia coli . Protein FA addition to the soluble fraction of a chlB mutant, brings about the activation of the molybdoenzyme, respiratory nitrate reductase, an inactive precursor of which is present in the chlB fraction. The rate of the activation process but not its extent is dependent upon the quantity of protein FA present. Protein FA activity is constitutively expressed and was present in normal amounts in chlA, D, E, F and G mutants but was absent from all chlB strains examined. This is consistent with protein FA being the active product of the chlB locus. Sodium tungstate (10 mM) in the growth medium has no effect on protein FA activity. Protein FA does not function as a source of molybdenum cofactor activity in the activation process.  相似文献   

8.
Experiments were performed to determine whether defects in molybdenum cofactor metabolism were responsible for the pleiotropic loss of the molybdoenzymes nitrate reductase and formate dehydrogenase in chl mutants of Escherichia coli. In wild-type E. coli, molybdenum cofactor activity was present in both the soluble and membrane-associated fractions when the cells were grown either aerobically or anaerobically, with and without nitrate. Molybdenum cofactor in the soluble fraction decreased when the membrane-bound nitrate reductase and formate dehydrogenase were induced. In the chl mutants, molybdenum cofactor activity was found in the soluble fraction of chlA, chlB, chlC, chlD, chlE, and chlG, but only chlB, chlC, chlD, and chlG expressed cofactor activity in the membrane fraction. The defect in the chlA mutants which prevented incorporation of the soluble cofactor into the membrane also caused the soluble cofactor to be defective in its ability to bind molybdenum. This cofactor was not active in the absence of molybdate, and it required at least threefold more molybdate than did the wild type in the Neurospora crassa nit-1 complementation assay. However, the cofactor from the chlA strain mediated the dimerization of the nit-1 subunits in the presence and absence of molybdate to yield the 7.9S dimer. Growth of chlA mutants in medium with increased molybdate did not repair the defect in the chlA cofactor nor restore the molybdoenzyme activities. Thus, molybdenum cofactor was synthesized in all the chl mutants, but additional processing steps may be missing in chlA and chlE mutants for proper insertion of cofactor in the membrane.  相似文献   

9.
The chlorate-resistant (chlR) mutants are pleiotropically defective in molybdoenzyme activity. The inactive derivative of the molybdoenzyme, respiratory nitrate reductase, present in the cell-free extract of a chlB mutant, can be activated by the addition of protein FA, the probable active product of the chlB locus. Protein FA addition, however, cannot bring about the activation if 10 mM sodium tungstate is included in the culture medium for the chlB strain. The inclusion of a heat-treated preparation of a wild-type or chlB strain prepared after growth in the absence of tungstate, restores the protein-FA-dependent activation of nitrate reductase. All attempts to activate nitrate reductase in extracts prepared from tungstate-grown wild-type Escherichia coli strains failed. It appears that during growth with tungstate, the possession of the active chlB gene product leads to the synthesis of a nitrate reductase derivative which is distinct from that present in the tungstate-grown chlB mutant. Heat-treated preparations from chlA and chlE mutants which do not possess molybdenum cofactor activity fail to restore the activation. Fractionation by gel filtration of the heat-treated preparation from a wild-type strain produced two active peaks in the eluate of approximate Mr 12000 and less than or equal to 1500. The active material in the heat-treated extract was resistant to exposure to proteinases, but after such treatment the active component, previously of approximate Mr 12000, eluted from the gel filtration column with the material of Mr less than or equal to 1500. The active material is therefore of low molecular mass and can exist either in a protein-bound form or in an apparently free state. Molybdenum cofactor activity, assayed by the complementation of the apoprotein of NADPH:nitrate oxidoreductase in an extract of the nit-1 mutant of Neurospora crassa, gave a profile following gel filtration similar to that of the ability to restore respiratory nitrate reductase activity to the tungstate-grown chlB mutant soluble fraction. This was the case even after proteinase treatment of the heat-stable fraction. Analysis of the chlC (narC) mutant, defective in the structural gene for nitrate reductase, revealed that heat treatment is not necessary for the expression of the active component. Furthermore both the active component and molybdenum cofactor activity are present in corresponding bound and free fractions in the non-heat-treated soluble subcellular fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
All molybdoenzyme activities are absent in chlB mutants because of their inability to synthesize molybdopterin guanine dinucleotide, which together with molybdate constitutes the molybdenum cofactor in Escherichia coli. The chlB mutants are able to synthesize molybdopterin. We have previously shown that the inactive nitrate reductase present in a chlB mutant can be activated in a process requiring protein FA and a heat-stable low-molecular-weight substance. We show here that purified nitrate reductase from the soluble fraction of a chlB mutant can be partially activated in a process that requires protein FA, GTP, and an additional protein termed factor X. It appears that the molybdopterin present in the nitrate reductase of a chlB mutant is converted to molybdopterin guanine dinucleotide during activation. The activation is absolutely dependent upon both protein FA and factor X. Factor X activity is present in chlA, chlB, chlE, and chlG mutants.  相似文献   

11.
Summary Seven genomic libraries of chromosomal Escherichia coli K12 wild-type DNA were constructed in plasmid vectors. These were used to transform chl insertion mutants. Selection for growth on nitrate under anaerobic conditions yielded four plasmids which complemented mutants of the chlA, B, E and G types. The chromosomal fragments were mapped with restriction enzymes and subcloned. Three complementation groups were observed among the chlA mutants and two among the chlE mutants. The established complementation groups plus mutants of the chlD type represent eight distinct functions, which are all believed to be required for the molybdenum cofactor activity in the reduction of nitrate to nitrite by E. coli.  相似文献   

12.
A singular mutant strain from Chlamydomohas reinhardii defective in nitrate reductase has been characterized. Mutant 301 possesses an ammonia-repressible NAD(P)H-cytochrome c reductase with the same charge and size properties as the low molecular weight ammonia-repressible diaphorase present in the wild-type strain 6145c and is also able to reconstitute NAD(P)H-nitrate reductase activity by in vitro complementation with reduced benzyl viologen-nitrate reductase from mutant 305. Furthermore, a heat-labile costitutive molybdenum cofactor which is fuctionally active is also present in mutant 301. Mutant 301 has the two requirements exhibited by the active nitrate reductase complex from fungi, namely, NAD(P)H-cytochrome c reductase activity and molybdenum cofactor, but lacks NAD(P)H-nitrate reductase activity. This fact together with biochemical data presented from other C. reinhardii mutants strongly suggest a heteropolymeric model for the nitrate reductase complex of the alga.  相似文献   

13.
Summary Chlorate resistant mutants of Arabidopsis thaliana were isolated, of which 10 exhibited a lowered nitrate reductase activity and 51 were chlorate-resistant because of an impaired uptake of chlorate. The 51 mutants of this type are all affected in the same gene. The mutants with a lowered nitrate reductase activity fall into 7 different complementation groups. Three of these mutants grow poorly on media with nitrate as the sole nitrogen source, while the others apparently can reduce sufficient nitrate to bring about growth. In all cases a low nitrate reductase activity coincides with an enhanced nitrite reductase activity. After sucrose gradient centrifugation of wildtype extracts nitrate reductase is found at the 8S position, whereas cytochrome-c reductase is found both at 4 and 8S positions. It is suggested that the functional nitrate reductase is a complex consisting of 4S subunits showing cytochrome-c reductase activity and a Mo-bearing cofactor. All mutants except B25 are capable of assembling the 4S subunits into complexes which for most mutants have a lower S value and exhibit a lower nitrate reductase activity than the wildtype complexes. Since the mutants B25 and B73 exhibit a low xanthine dehydrogenase activity, the Mo-bearing cofactor is probably less available in these mutants than in the wildtype. B73 appears to be the only mutant which is partly repaired by excessive Mo. The possible role of several genes is discussed.  相似文献   

14.
The isolation and purification of the product of the chl B gene of Escherichia coli K 12 from the chl A mutant have been attempted. The purified protein gives a single band in 10 % sodium dodecylsulfate/polyacrylamide gel electrophoresis. The molecular weight is estimated to be 35 000. This protein, that we have named “FA factor”, does not contain any lipid, has a strong tendency to lose its activity by polymerizing but can be kept in an active state when stored in buffer containing NaCl. The addition of purified FA protein to a soluble extract from the chl B mutant strain grown under anaerobiosis in the presence of nitrate initiates the “complementation reaction”, i.e. the reconstitution of the nitrate reductase activity and the formation of particulate material similar to the native membrane with respect to the structure and enzymatic function. FA protein acts both on the rate of reconstitution and on the total amount of reconstituted enzyme. The complementation leads to the reconstitution of nonsedimentable nitrate reductase and to the formation of three types of particles of different buoyant densities (1.10, 1.18 and 1.23) the two lightest of which contain nitrate reductase. It is shown that FA factor is incorporated only into the particles of intermediate density. In vivo, this factor is located in the native membranes of chl A, chl C, chl D and wild-type strains, whatever the growth conditions, aerobiosis or anaerobiosis, and in the presence or absence of nitrate. Protein FA can be released from either of these membranes (native or reconstituted) by removing Mg2+ or by subjecting Kaback's vesicles to mechanical treatments; in the case of 1.18-reconstituted particles and wild-type membranes, the release of FA protein does not exert any effect on the level of the nitrate reductase activity.  相似文献   

15.
Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene.  相似文献   

16.
All molybdenum enzymes except nitrogenase contain a common molybdenum cofactor, whose organic moiety is a novel pterin called molybdopterin (MPT). To assist in elucidating the biosynthetic pathway of MPT, two MPT-deficient mutants of Escherichia coli K-12 were isolated. They lacked activities of the molybdenum enzymes nitrate reductase and formate dehydrogenase, did not reconstitute apo nitrate reductase from a Neurospora crassa nit-1 strain, and did not yield form A, a derivative of MPT. By P1 mapping, these two mutations mapped to chlA and chlE, loci previously postulated but never definitely shown to be involved in MPT biosynthesis. The two new mutations are in different genetic complementation groups from previously isolated chlA and chlE mutations and have been designated as chlM and chlN (closely linked to chlA and chlE, respectively). The reported presence of Mo cofactor activity in the chlA1 strain is shown to be due to in vitro synthesis of MPT through complementation between a trypsin-sensitive macromolecule from the chlA1 strain and a low-molecular-weight compound from the nit-l strain.  相似文献   

17.
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system.  相似文献   

18.
Mutant strains in the tsaA gene encoding alkyl hydroperoxide reductase were more sensitive to O2 and to oxidizing agents (paraquat, cumene hydroperoxide and t-butylhydroperoxide) than the wild type, but were markedly more resistant to hydrogen peroxide. The mutant strains resistance phenotype could be attributed to a 4-fold and 3-fold increase in the catalase protein amount and activity, respectively compared to the parent strain. The wild type did not show an increase in catalase expression in response to sequential increases in O2 exposure or to oxidative stress reagents, so an adaptive compensatory mutation has probably occurred in the mutants. In support of this, chromosomal complementation of tsaA mutants restored alkyl hydroperoxide reductase, but catalase was still up-expressed in all complemented strains. The katA promoter sequence was the same in all mutant strains and the wild type. Like its Helicobacter pylori counterpart strain, a H. hepaticus tsaA mutant contained more lipid hydroperoxides than the wild type strain. Hepatic tissue from mice inoculated with a tsaA mutant had lesions similar to those inoculated with the wild type, and included coagulative necrosis of hepatocytes. The liver and cecum colonizing abilities of the wild type and tsaA mutant were comparable. Up-expression of catalase in the tsaA mutants likely permits the bacterium to compensate (in colonization and virulence attributes) for the loss of an otherwise important oxidative stress-combating enzyme, alkyl hydroperoxide reductase. The use of erythromycin resistance insertion as a facile way to screen for gene-targeted mutants, and the chromosomal complementation of those mutants are new genetic procedures for studying H. hepaticus.  相似文献   

19.
Evaluation of Nitrate Reductase Activity in Rhizobium japonicum   总被引:2,自引:0,他引:2       下载免费PDF全文
Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase.  相似文献   

20.
Silene alba cells grown on nitrate, usually develop NADH-nitrate reductase activity only at the beginning of their growth cycle. Immunodiffusion assays, with a specific nitrate reductase antiserum, revealed the presence of cross-reacting material in cells harvested at any time during their culture. Cells grown on ammonium lacked NADH-nitrate reductase activity but contained cross-reacting material. It is suggested that S. alba cells contain an enzymically inactive, antigenic form of nitrate reductase regardless of the nitrogen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号