首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutant strains in the tsaA gene encoding alkyl hydroperoxide reductase were more sensitive to O(2) and to oxidizing agents (paraquat, cumene hydroperoxide and t-butylhydroperoxide) than the wild type, but were markedly more resistant to hydrogen peroxide. The mutant strains resistance phenotype could be attributed to a 4-fold and 3-fold increase in the catalase protein amount and activity, respectively compared to the parent strain. The wild type did not show an increase in catalase expression in response to sequential increases in O(2) exposure or to oxidative stress reagents, so an adaptive compensatory mutation has probably occurred in the mutants. In support of this, chromosomal complementation of tsaA mutants restored alkyl hydroperoxide reductase, but catalase was still up-expressed in all complemented strains. The katA promoter sequence was the same in all mutant strains and the wild type. Like its Helicobacter pylori counterpart strain, a H. hepaticus tsaA mutant contained more lipid hydroperoxides than the wild type strain. Hepatic tissue from mice inoculated with a tsaA mutant had lesions similar to those inoculated with the wild type, and included coagulative necrosis of hepatocytes. The liver and cecum colonizing abilities of the wild type and tsaA mutant were comparable. Up-expression of catalase in the tsaA mutants likely permits the bacterium to compensate (in colonization and virulence attributes) for the loss of an otherwise important oxidative stress-combating enzyme, alkyl hydroperoxide reductase. The use of erythromycin resistance insertion as a facile way to screen for gene-targeted mutants, and the chromosomal complementation of those mutants are new genetic procedures for studying H. hepaticus.  相似文献   

2.
Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.  相似文献   

3.
Cell extracts from shake cultures of the wild type and six mutant strains of Phycomyces converted [2-14C] MVA into carotenes, squalene and prenyl phosphates. Oxygen was required for the desaturation of phytoene. When compared with the wild type, cells extracts of carB and carR mutants are much less effective in phytoene dehydrogenation and lycopene cyclization, respectively. This confirms previous conclusions about the biochemical functions of the carB and carR genes, which were based on genetic and in vivo studies. CarA strain mutants accumulate, in vivo, much less β-carotene than the wild type. This correlates with a 10-fold decrease in carotenogenesis in vitro. The addition of retinol to incubations of cell extracts of the wild type and C2 strains stimulated β-carotene formation. Both carB and carR mutants show enhanced total carotenogenic activities in vitro and the carS mutant shows a higher β-carotene-synthesizing activity than the wild type. It is suggested that the feed-back regulatory mechanism known to control this pathway operates at the level of enzyme synthesis.  相似文献   

4.
We have isolated a new organic hydroperoxide resistance (ohr) gene from Xanthomonas campestris pv. phaseoli. This was done by complementation of an Escherichia coli alkyl hydroperoxide reductase mutant with an organic hydroperoxide-hypersensitive phenotype. ohr encodes a 14.5-kDa protein. Its amino acid sequence shows high homology with several proteins of unknown function. An ohr mutant was subsequently constructed, and it showed increased sensitivity to both growth-inhibitory and killing concentrations of organic hydroperoxides but not to either H2O2 or superoxide generators. No alterations in sensitivity to other oxidants or stresses were observed in the mutant. ohr had interesting expression patterns in response to low concentrations of oxidants. It was highly induced by organic hydroperoxides, weakly induced by H2O2, and not induced at all by a superoxide generator. The novel regulation pattern of ohr suggests the existence of a second organic hydroperoxide-inducible system that differs from the global peroxide regulator system, OxyR. Expression of ohr in various bacteria tested conferred increased resistance to tert-butyl hydroperoxide killing, but this was not so for wild-type Xanthomonas strains. The organic hydroperoxide hypersensitivity of ohr mutants could be fully complemented by expression of ohr or a combination of ahpC and ahpF and could be partially complemented by expression ahpC alone. The data suggested that Ohr was a new type of organic hydroperoxide detoxification protein.  相似文献   

5.
Enzymes and metabolites associated with mitigation of paraquat toxicity were compared in two paraquat-tolerant mutants and a sensitive wild-type strain of the fern Ceratopteris richardii Brongn. In 21-day-old gametophytes, the specific activities of superoxide dismutase, catalase, peroxidase, glutathione reductase, dehydroascorbate reductase, and ascorbate peroxidase showed no differences that would explain mutant tolerance. Constitutive levels of ascorbate and glutathione also did not differ significantly in the three strains. An experiment testing the inducibility of paraquat tolerance revealed no change in the dose response of mutant or wild type gametophytes after exposure to sublethal concentrations of the herbicide. Uptake of paraquat by whole gametophytes was also equivalent in mutants and wild type. These data suggest that the physiological basis for tolerance in these mutants, unlike several other tolerant biotypes reported, does not lie in the oxygen radical scavenging system, in an inducible stress response, or in a block to whole-plant uptake.  相似文献   

6.
Mutant strains of Bradyrhizobium japonicum that required higher levels of molybdate than the wild-type strain for growth on NO3-containing medium were obtained after transposon Tn5 mutagenesis of the wild-type strain. The mutant strains expressed more than fivefold-greater nitrate reductase activities in the range of 0.1 to 1.0 mM added molybdate compared with activities expressed upon incubation in non-Mo-supplemented medium, whereas the nitrate reductase activity of the wild-type strain (JH) was not markedly influenced by Mo supplementation. In free-living culture, mutant strains JH310 and JH359 expressed substantial nitrogenase activity, even in medium treated to remove molybdate, and nitrogenase activity was influenced little by Mo supplementation, whereas the wild-type strain required 100 nM added Mo for highest nitrogenase activity. Double-reciprocal plots of Mo uptake rates versus Mo concentration showed that both bacteroids and free-living cells of mutant strain JH359 had about the same affinity for Mo as did the parent strain. Bacteroids of both the mutants and the wild type also exhibited similar Mo accumulation rates over a 9-min period under very-low-Mo (4 nM) conditions. Nitrogenase activities for strain JH359 and for the wild-type strain in free-living culture were both strongly inhibited by tungsten; thus, the nitrogenase activities of both strains are probably the result of a “conventional” Mo-containing nitrogenase. Soybeans inoculated with strain JH359 and grown under either Mo-supplemented or Mo-deficient conditions had greater specific acetylene reduction rates and significantly greater plant fresh weight than those inoculated with the wild-type strain. Under Mo-deficient conditions, the acetylene reduction rates and plant fresh weights were up to 35 and 58% greater, respectively, for mutant-nodulated plants compared with wild-type-strain-nodulated plants.  相似文献   

7.
We report some properties of Protein PA which has been isolated from the soluble fraction of a chlB mutant after anaerobic growth in the presence of KNO3. This protein has been identified by its capacity to reactivate nitrate reductase present in the soluble fraction of a chlA mutant by the complementation process. The presence of active Protein PA in the chlB mutant is independent of the presence of oxygen or of nitrate during growth. In contrast, the addition of sodium tungstate to the growth medium leads to the formation of inactive Protein PA which is not able to activate nitrate reductase in the chlA-soluble extract by complementation. Inactive Protein PA has been quantitated immunologically. The partial purification of Protein PA has been achieved from various chlorate-resistant mutants (chlA?chlG). The establishment of particular complementation systems comprising the soluble extracts of chlA or chlB mutants and partially purified Protein PA from soluble fractions of different chlorate-resistant mutants, has allowed the quantitative estimation of this protein. The analysis by ‘rocket immunoelectrophoresis’ using an antiserum specific for Protein PA has shown that inactive Protein PA is present in approximately equivalent amounts in the chlA, chlE, chlG and chlD mutants  相似文献   

8.
9.
A singular mutant strain from Chlamydomohas reinhardii defective in nitrate reductase has been characterized. Mutant 301 possesses an ammonia-repressible NAD(P)H-cytochrome c reductase with the same charge and size properties as the low molecular weight ammonia-repressible diaphorase present in the wild-type strain 6145c and is also able to reconstitute NAD(P)H-nitrate reductase activity by in vitro complementation with reduced benzyl viologen-nitrate reductase from mutant 305. Furthermore, a heat-labile costitutive molybdenum cofactor which is fuctionally active is also present in mutant 301. Mutant 301 has the two requirements exhibited by the active nitrate reductase complex from fungi, namely, NAD(P)H-cytochrome c reductase activity and molybdenum cofactor, but lacks NAD(P)H-nitrate reductase activity. This fact together with biochemical data presented from other C. reinhardii mutants strongly suggest a heteropolymeric model for the nitrate reductase complex of the alga.  相似文献   

10.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that can survive and replicate within macrophages. One of the host defense mechanisms that Salmonella encounters during infection is the production of reactive oxygen species by the phagocyte NADPH oxidase. Among them, hydrogen peroxide (H2O2) can diffuse across bacterial membranes and damage biomolecules. Genome analysis allowed us to identify five genes encoding H2O2 degrading enzymes: three catalases (KatE, KatG, and KatN) and two alkyl hydroperoxide reductases (AhpC and TsaA). Inactivation of the five cognate structural genes yielded the HpxF mutant, which exhibited a high sensitivity to exogenous H2O2 and a severe survival defect within macrophages. When the phagocyte NADPH oxidase was inhibited, its proliferation index increased 3.7-fold. Moreover, the overexpression of katG or tsaA in the HpxF background was sufficient to confer a proliferation index similar to that of the wild type in macrophages and a resistance to millimolar H2O2 in rich medium. The HpxF mutant also showed an attenuated virulence in a mouse model. These data indicate that Salmonella catalases and alkyl hydroperoxide reductases are required to degrade H2O2 and contribute to the virulence. This enzymatic redundancy highlights the evolutionary strategies developed by bacterial pathogens to survive within hostile environments.Salmonella is a facultative intracellular pathogen that is associated with gastroenteritis, septicemia, and typhoid fever. This gram-negative bacterium survives and replicates in macrophages during the course of infection and can be exposed to a number of stressful environments during its life cycle (16). One of the host defense mechanisms that Salmonella encounters upon infection is the production of superoxide anion O2 by the phagocyte NADPH oxidase (1, 25). This radical can pass the outer membrane of the bacteria and represents one of the major weapons used by the macrophage to kill engulfed pathogens (18). Evidence that phagocyte-produced superoxide is a key mechanism for avoiding Salmonella infection is clear: mice and humans who are genetically defective in superoxide production are significantly more susceptible to infection (36, 38). Superoxide dismutases, located in the bacterial periplasm and in the cytoplasm, dismutate superoxide O2 to hydrogen peroxide H2O2 and molecular oxygen. Unlike superoxide, hydrogen peroxide can diffuse readily across bacterial membranes and form HO hydroxyl radicals in the presence of Fe(II) (18). These reactive oxygen species (ROS) can oxidize and damage proteins, nucleic acids, and cell membranes.To scavenge and degrade H2O2 molecules generated either as a by-product of aerobic metabolism or by the phagocyte NADPH oxidase, Salmonella has evolved numerous defense mechanisms. The KatE and KatG catalases are involved in H2O2 degradation, with katE being described as a member of the RpoS regulon (17, 22) and katG being OxyR dependent (26, 39). Both enzymes share the ability to reduce hydrogen peroxide to water and molecular oxygen, and their role was shown to be predominant at millimolar concentrations of H2O2 since they do not require any reductant (32). This observation is of particular importance, since these enzymes are not limited by the availability of a reductant, such as NADH, which cannot be generated fast enough to face a burst of H2O2. However, the katG and katE simple mutants, as well as the katE katG double mutant, did not show any increased susceptibility in macrophage or virulence attenuation in mice (5, 27). A possible reason could be the presence of a third nonheme and manganese-dependent catalase called KatN (30). This enzyme may contribute to hydrogen peroxide resistance under certain environmental conditions, but its involvement in virulence remains unknown. Moreover, katE, katG, and katN single mutants did not show any susceptibility to exogenous millimolar H2O2, essentially due to the compensatory function of the remaining catalases (5, 30).Another family of enzymes was shown to play an alternative role in H2O2 scavenging: the alkyl hydroperoxide reductases. These proteins directly convert organic hydroperoxides to alcohols, e.g., hydrogen peroxide to water. The alkyl hydroperoxide reductase AhpC belongs to the two-cysteine peroxiredoxin family, and the gene encoding this enzyme was identified as a member of the OxyR regulon (26, 39). The redox system consists of two proteins, AhpC and AhpF, with the latter being a thioredoxin reductase-like protein that contains two disulfide centers and transfers electrons from NADH to AhpC (13). AhpC was shown to be a predominant scavenger at low concentrations of H2O2, mainly because its catalytic efficiency was better than those of catalases (32). Recently the alkyl hydroperoxide reductase from Helicobacter hepaticus, TsaA (Thiol-Specific Antioxidant), was characterized (24). The tsaA mutant was found to be more sensitive to oxidizing agents like superoxide anion or t-butyl hydroperoxide. Surprisingly, this mutant was more resistant than the wild-type to H2O2, essentially because the level of catalase was increased in this background (24). In gastric pathogens, TsaA plays a critical role in the defense against oxygen toxicity that is essential for survival and growth (2). Interestingly, Salmonella contains two genes encoding alkyl hydroperoxide reductases, ahpC and tsaA, whereas a single copy was found in Escherichia coli (ahpC) or in Helicobacter pylori (tsaA).The redundancy of these antioxidant proteins could explain the extremely high resistance of Salmonella to hydrogen peroxide. It has been shown by Imlay and coworkers that in E. coli, three genes were involved in H2O2 scavenging: two catalase genes (katE and katG) and an alkyl hydroperoxide reductase gene (ahpC) (32). Simultaneous inactivation of the katE, katG, and ahpCF genes negated H2O2 degradation. As a consequence, this triple mutant, called the Hpx mutant, accumulates intracellular H2O2 (32). Moreover, H2O2 generated by aerobic metabolism was found to be sufficient to create toxic levels of DNA damage in such a background (28). In the present study, we deleted the Salmonella katE, katG, and ahpCF genes and two more genes absent in E. coli, katN and tsaA, to obtain the HpxF mutant, which lacks three catalases and two alkyl hydroperoxide reductases. HpxF cells exhibited the incapacity to degrade micromolar concentrations of H2O2, whereas this phenotype was not observed for the Kat (katE katG katN) and Ahp (ahpCF tsaA) mutants. Therefore, the HpxF mutant exhibited a high sensitivity to this compound. Moreover, this mutant did not show any proliferation within macrophages and presented reduced virulence in mice, suggesting that Salmonella catalases and alkyl hydroperoxide reductases form a redundant antioxidant arsenal essential for survival and replication within host cells.  相似文献   

11.
1. A new procedure is described for selecting nitrogenase-derepressed mutants based on the method of Brenchley et al. (Brenchley, J. E., Prival, M. J. and Magasanik, B. (1973) J. Biol. Chem. 248, 6122–6128) for isolating histidase-constitutive mutants of a non-N2-fixing bacterium.2. Nitrogenase levels of the new mutants in the presence of NH4+ were as high as 100% of the nitrogenase activity detected in the absence of NH4+.3. Biochemical characterization of these nitrogen fixation (nif) derepressed mutants reveals that they fall into three classes. Three mutants (strains SK-24, 28 and 29), requiring glutamate for growth, synthesize nitrogenase and glutamine synthetase constitutively (in the presence of NH4+). A second class of mutants (strains SK-27 and 37) requiring glutamine for growth produces derepressed levels of nitrogenase activity and synthesized catalytically inactive glutamine synthetase protein, as determined immunologically. A third class of glutamine-requiring, nitrogenase-derepressed mutants (strain SK-25 and 26) synthesizes neither a catalytically active glutamine synthetase enzyme nor an immunologically cross-reactive glutamine synthetase protein.4. F-prime complementation analysis reveals that the mutant strains SK-25, 26, 27, 37 map in a segment of the Klebsiella chromosome corresponding to the region coding for glutamine synthetase. Since the mutant strains SK-27 and SK-37 produce inactive glutamine synthetase protein, it is concluded that these mutations map within the glutamine synthetase structural gene.  相似文献   

12.
13.
Acid-treated extracts of Escherichia coli were tested for their ability to restore reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase activity to an extract of a Neurospora nit-1 mutant which produces a defective enzyme. With wild-type E. coli this complementation activity was more readily detected in the cytoplasmic fraction, although the nitrate reductase activity was found primarily in the particulate fraction. chlB mutants of E. coli appeared to have more complementation activity in the cytoplasm than was observed in the wild type, but no activity in the particulate fraction. The other chl mutants had little or no activity in either fraction. These results suggest that chlB mutants can produce a component or cofactor which is missing in the other mutants and in the Neurospora mutant, but cannot transfer it to the nitrate reductase enzyme.  相似文献   

14.
Zelitch I 《Plant physiology》1990,92(2):352-357
The increase in net photosynthesis in M4 progeny of an O2-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O2 has been confirmed and further investigated. Self-pollination of an M3 mutant produced M4 progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O2-resistant photosynthesis. About 25% of the F1 progeny of reciprocal crosses between the same M3 mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO2 as a percent of net photosynthesis in CO2-free 21% O2 and 36% less in CO2-free 42% O2 compared with wild type. The mutant leaf tissue also released less 14CO2 per [1-14C]glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O2-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O2 where the stoichiometry of CO2 release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H2O2.  相似文献   

15.
16.
17.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

18.
Peter Rowell  Roy Powls 《BBA》1976,423(1):65-79
The partial reactions of photosynthesis shown by strain F208, a non-photosynthetic mutant strain of Scenedesmus obliquus, have been compared with those performed by other mutant strains which lacked; Photosystem II activity (strains 11 and F131), cytochrome f (strain 50), P-700 and cytochrome f (strain F119), and P-700 (strains F139 and 199). In this respect the properties of strain F208 were those that would be expected if Photosystem II activity and cytochrome f were not present in this strain. Examination of the composition of strain F208 has shown the absence of cytochrome f in both the soluble and the membrane-bound form. The considerably lower level of plastoquinone compared to that found in the wild type is characteristic of the strains which lack Photosystem II activities.Fraction 1 protein could not be detected in extracts of strain F208 by sedimentation velocity experiments in the ultracentrifuge, and only 7% of the wild type ribulose diphosphate carboxylase activity was found after chromatography of these extracts on DEAE-cellulose.The properties of strain F208 are compared with those of the ac-20 and cr-1 strains of Chlamydomonas rheinhardi, both of which have a deficiency of ribulose diphosphate carboxylase which is considered to result from a deficiency of chloroplast ribosomes. Strain F208 resembles these strains in its abnormal chloroplast ultrastructure and its decreased levels of the RNA forms derived from the chloroplast ribosomes when compared with the wild type.Chloroplast fragments isolated from strains of S. obliquus which lacked cytochrome f (strains 50 and F208) were able to use diaminodurene and ascorbate as an electron donor to Photosystem I. Since this reaction was inhibited by mercuric salts it would appear that plastocyanin, but not cytochrome f, was involved in this electron transfer.  相似文献   

19.
In this work, we evaluated the effects of cadmium (Cd) on the antioxidant defense system responses and the role of nitrate reductase (NR) in the redox balance maintenance in Bradyrhizobium japonicum strains. For that, B. japonicum USDA110 and its NR defective mutant strain (GRPA1) were used. Results showed that the addition of 10 μM Cd did not modify the aerobic growth of the wild type strain while the mutant strain was strongly affected. Anaerobic growth revealed that only the parental strain was able to grow under this condition. Cd reduced drastically the NR activity in B. japonicum USDA110 and increased lipid peroxide content in both strains. Cd decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in B. japonicum USDA110 although, a significant increased was observed in the mutant GRPA1. GSH-related enzymes were induced by Cd, being more evident the increase in the mutant strain. This different behavior observed between strains suggests that NR enzyme plays an important role in the redox balance maintenance in B. japonicum USDA 110 exposed to Cd.  相似文献   

20.
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号