首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two processes for the production of indole alkaloids 2 l surface-immobilized bioreactor cultures of Catharanthus roseus cells using Zenk's Alkaloid Production Medium (APM) were evaluated. The 1-stage process consisted of inoculating APM containing bioreactors and incubating for 15 d. The 2-stage process involved inoculating growth medium-containing bioreactors, growing the immobilized cultures for a certain period of time and subsequently replacing this medium with APM. The production stage which lasted for 15 d. High production in 2-stage cultures required the replacement of the growth regulator 2,4-dichlorophenoxyacetic acid by indole-3-acetic acid in the growth medium and a growth stage of 6 d (late exponential phase) before production initiation. Growth, main nutrient consumption and alkaloid production were monitored. Both culture regimes resulted in similar biomass production, dw (10-13 g l-1). The 2-stage cultures yielded biomass richer in organic nutrients (200-300%) and with higher respiratory activity (approximately 250%), indicated by their lower biomass-to-carbohydrate yields (31% and 26%), as compared to 1-stage cultures (41%). Two-stage cultures produced more known products (10 as compared to 6) at yields (5 to 4800 micrograms g-1) 3 to 5 times higher than 1-stage cultures. More alkaloids were alkaloids released in the medium of 2-stage cultures, under non-lysing conditions, (20 to 4700 micrograms l-1) than in 1-stage cultures (20 to 460 micrograms l-1). These results were compared to those obtained from shake flask cultures performed at the same time, with the same C. roseus cell line and under similar regimes and reported previously. Suspension and immobilized cultures performed according to the 1-stage regime showed similar total production. However, release of known alkaloids was 2 to 3 times higher in immobilized than in suspension cultures. Total alkaloid production of 2-stage suspension cultures was 3.8-fold higher than 2-stage immobilized cultures. Two stage immobilized cultures released 4 more known alkaloids than the 2-stage suspensions. Lower oxygen availability in the 2 l immobilized cultures may explain lower specific growth rates (0.15-0.22 d-1) and total alkaloid production levels, compared to 200 ml suspension cultures (0.2-0.4 d-1) reported in our previous paper.  相似文献   

2.
The processes for production of indole alkaloids in shake flask suspension cultures of Catharanthus roseus cells using Zenk's alkaloid production medium (APM) were evaluated. The 1-stage process consisted of inoculating APM and incubating for 15 days. The 2-stage process involved 6 d of cultivation in growth medium followed by 15 d of incubation in APM. Growth, main nutrient consumption and alkaloid production were monitored. Both culture processes produced approximately 20 g dw per 1 biomass. However, 2-stage cultures yielded an inorganic nutrient richer and more active plant cell biomass, richer in inorganic nutrients, as indicated by higher (greater than 70%) nutrient availability and consumption. Total and individual indole alkaloid production were 10 times higher (740 mg l-1 and 25 to 4000 micrograms per g dw, respectively) for 2-stage than for 1-stage cultures. For both processes, highest alkaloid productivity coincided with complete extracellular consumption of major inorganic nutrients, especially nitrate, by the cells. Complete carbohydrate consumption in 2-stage cultures resulted in a 40% decline in production. Small but significant (approximately 10%) product release was observed for both culture regimes, which seemed not to be related to cell lysis.  相似文献   

3.
Surface-immobilized C. roseus cell cultures were grown in a 20-l modified airlift bioreactor operated at 0.51 vvm (kLa approximately 8 h-1) under various gassing regimes [air, 2% (v/v) and 5% CO2]. Extracellular ammonium, phosphate, and nitrate ions as well as carbohydrate uptake and pH value of the medium were monitored together with on-line dissolved oxygen concentration, conductivity of the medium, and carbon dioxide production rate (CPR) of the cultures. Cultures supplemented with 2% CO2 showed higher nitrate (5.0-7.0 mM d-1) and carbohydrate (3.3 g l-1 d-1) uptake rates and biomass production (mu approximately 0.24 d-1, yield approximately 0.33 g dw g CHO-1 and 7.4 g dw L-1) as compared to air (3.6 mM d-1, 2.1 g l-1 d-1; 0.20 d-1, 0.25 g dw g CHO-1 and 5 g dw l-1) and 5% CO2 (2.0-3.6 mM d-1, 2.0 g l-1 d-1; 0.11 d-1, 0.20 g dw g CHO-1 and 5 g dw l-1) cultures and as reported previously for suspension cultures. In addition, air and 5% CO2 cultures displayed incomplete carbohydrate uptake and, more important, phosphate and ammonium ion release into the medium at the end, which was ascribed to loss of viability. This was not observed for 2% CO2 immobilized bioreactor as well as shake flask control suspension cultures, which suggests that sparged C. roseus surface-immobilized cell cultures require 2% CO2 supplementation of the gas phase for both maximum growth and retained viability. The maximum CPRs of all cultures were in the same range (2.1-2.8 mM CO2 l-1 h-1). However, the estimated maximum specific CO2 production rates of 2% CO2 and 5% CO2 immobilized cultures (0.6 mM g dw-1 h-1) were lower than those found for air-sparged immobilized cultures (1.0-1.3 mM g dw-1 h-1). These rates are significantly higher than those reported in the literature for C. roseus cell suspension cultures performed in bioreactors gassed with air (approximately 0.2-0.55 mM g dw-1 h-1).  相似文献   

4.
Cell cultures of Rauwolfia sellowii: growth and alkaloid production   总被引:1,自引:0,他引:1  
Callus and cell suspension cultures of Rauwolfia sellowii were established in Gamborg B5 medium supplemented with 1 mg l-1 2,4-dichlorophenoxyacetic acid, 0.2 mg l-1 kinetin and 30 g l-1 sucrose. The growth cycle of suspension cultures was completed in ca. 22 days and the maximum specific growth rate was 0.0098 h-1 with a doubling time of 71 h. The cultures accumulated the same major alkaloids as in the leaves of the parent plant, such as sellowiine, 19α,20α-epoxyakuammicine, vomilenine, picrinine and 12-demethoxytabernulosine. The alkaloid contents of leaves, callus and cell suspension cultures were quantitatively compared by HPLC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Cell suspension cultures of Eschscholtzia californica produce relatively large amounts of benzophenanthridine alkaloids upon elicitation. Sodium orthovanadate is used as an abiotic elicitor to induce alkaloid biosynthesis in cultures of E. californica. The response of the cell culture to this abiotic elicitor is very similar to that observed after elicitation with a biotic elicitor (a carbohydrate fraction from yeast extract). Treatment with orthovanadate leads to alkalinization of the growth medium, a 20-fold induction of the key enzyme tyrosine decarboxylase and increased alkaloid formation (up to 40 mg.L–1). Cells treated with the yeast elicitor excrete a large portion of alkaloids produced into the growth medium (up to 50 % of total alkaloids) while cells treated with orthovanadate release very small amounts of alkaloids into the medium (less than 10 % of total alkaloids). These results suggest that an active transport system, possibly specific for benzophenanthridine alkaloids, is present in the plasma membrane of E. californica cells. The nature of this putative vanadate-sensitive transporter is not known at present.  相似文献   

6.
Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.  相似文献   

7.
A number of cell cultures of Peganum harmala were initiated to check for a correlation between the harman alkaloid content of seedlings and cell lines derived therefrom. Despite a poor correlation between callus or suspension culture lines and parent plants, the mean alkaloid contents of strains derived from seedlings with higher alkaloid yields were nevertheless higher than the mean contents of strains derived from low yield plants. Generally, alkaloid accumulation decreased with the numbers of transfers. By permanent visual selection for fluorescent areas of the calluses, however, a mean content of 0.1% harman alkaloids and 0.1% serotonin could be maintained, which was 10 times higher than in unselected callus cultures.  相似文献   

8.
Four sublines of Chinese hamster ovary (CHO) cells were selected or cloned on a 10% fetal calf serum supplemented MEM-alpha medium. Three of them were monolayer cultures and could proliferate by 2000 times a week (mu = 1.1 d 1) in T-flasks. The other subline, S1, could grow in suspension even in static T-flask cultures. The stability in chromosome number of these cell lines was investigated. By evaluating the kinetic growth parameters, i.e. the specific rates of growth, glucose consumption and lactic acid production, and the yields of cells and lactic acid from glucose, the S1 cells were considered to be the most suitable subline for the bioreactor suspension culture. The S1 cells reached the greatest maximum of cell concentration among all cell lines tested because of their efficient glucose utilization. Observed nutrient limitations in the S1 cell culture was overcome by modification of the medium composition, that is addition of 10 mg l-1 hypoxanthine, 1 mg l-1 FeSO4.7H2O, and 0.1 mg l-1 sodium putrescine, elimination of glutamine, supplementation of 6 mM asparagine and double amount of isoleucine, leucine, methionine and vitamins other than ascorbic acid, cyanocobalamin and biotin, increase of NaHCO3 concentration from 26 to 40 mM, and finally decrease of NaCl concentration from 122 to 100 mM. With this modified medium, 7.2 X 10(6) ml-1 of the maximum cell concentration was observed in a glucose fed-batch culture, the cell concentration which was twice as much as in batch cultures with the original medium.  相似文献   

9.
Cultured Thalictrum rugosum cells were immobilized using a glass fiber substratum previously shown to provide optimum immobilization efficiency based on spontaneous adhesion mechanisms. When cultivated in shake flasks, immobilized cells exhibited decreased growth and protoberberine alkaloid production rates in comparison to freely suspended cells. Since alkaloid production is growth associated in T. rugosum, the decreased specific production rate was a function of the slower growth rate. Cells immobilized on glass fiber mats appear to be amenable for extended culture periods. Maximum biomass and protoberberine alkaloid levels were maintained for at least 14 days in immobilized cultures. In contrast, fresh weight, dry weight, and total alkaloid content decreased in suspension cultures following the linear growth phase.Glass fiber mats were incorporated in to a 4.5-L plant cell bioreactor as horizontal disks supported on a central rod. Mixing in the reactor was provided by the combined actions of a magnetic impeller and a cylindrical sparging colum. fThe magnetic impeller and a cylindrical sparging column. The entire inoculum biomass of T. rougosum, introduced as suspension, was spontaneously immobilized with in 8h. During liner phase, the growth rate of bioreactor cultivated immobilized cells (mu = 0.06 day(-1)) was 50% that immobilized cell viability in both systems was determined to be similar. The increase in specific production of protoberberine alklodis was initially similar in bioreactor-and culture period. The increase in specific production of protoberberine alkaloids was initially similar in bioreactor-and shake-flask-cultivated immobilized cells. However, the maximum specific production of bioreactor grown cultures was lower. The scale up potential of an immobilization strategy based on the spontaneous adhesion of immobilization strategy based on the spontaneous adhesion of cultured plant cells to glass fiber is demonstrated.  相似文献   

10.
Precursor feeding strategy for increasing the yield of conessine, a steroidal alkaloid of Holarrhena antidysenterica, was established in cell suspension culture. A total of 50 mg/L added cholesterol was converted into 43 mg/L of alkaloid, 90% of which constituted the conessine. By applying the precursor feeding policy to the cell suspension culture in modified Murashige and Skoog (MS) medium, a total of 143 mg/L of alkaloid was produced in 8 days. In this way the alkaloid content of the cells was increased more than six times compared to that obtained in the standard MS medium. The steps leading to biotransformation of cholesterol into alkaloids were unaffected by phosphate. The shake flask data were successfully transferred to a bench scale 6-L stirred tank bioreactor in which the specific biosynthetic rate of alkaloid production was 110 mg/100 g dry cell weight per day, about 160 times higher than that of whole plant.  相似文献   

11.
Root, callus, and cell suspension cultures have been establishedfrom seedlings of Atropa belladonna, L. and Atropa belladonna,cultivar lutea Döll. The growth of these cultures is described.Callus cultures transferred to auxin (-naphthaleneacetic acid)-freemedium initiated roots and shoots. Excised root cultures havebeen established from such roots and plants from such shoots.Extracts of the cultures have been submitted to the Vitali—Morinreaction and following chromatography, to the Dragendorff reaction.Cultured excised roots and plants raised from shoots initiatedon cultured callus were shown to contain atropine (hyoscyamine)and reactive substances corresponding in Rf to hyoscine andcuscohygrine. These alkaloids were absent from cultured callusand cultured cell suspensions and from leaves when initiatedwithout roots on callus. The cultured calluses and cell suspensionscontained choline (0.022–0.027 g per 100 g dry weightof root callus). The growth of cell suspension cultures wasnot inhibited by incorporating atropine sulphate, L-hyoscyamine,L-hyoscine hydrobromide, or DL-scopoline nitrate in the culturemedium at 250 mg/I. These alkaloids were absorbed by the cells,a high proportion of the added alkaloid could be recovered fromthe cultures even after 4 weeks' growth and no evidence wasobtained of the presence of degradation products of the alkaloids.The suppression of alkaloid formation in actively growing callusand cell suspension cultures is discussed.  相似文献   

12.
An efficient procedure has been developed for callus induction and cell suspension cultures of C. saxicola for the first time. Explant selection was carried out among leaf, stem and root to select a suitable type of explants capable of higher callus formation. Leaf explants thus selected showed maximum response to callus induction (67.1%). Modified B5 medium supplemented with 0.5 mg l(-1) 2,4-D plus 2 mg l(-1) BA was the most favorable medium for callus formation with the highest induction rate (94.8%) and greatest fresh weight of callus (1.7 g per explant). Cell suspension cultures were established by transferring 2-8 g fresh callus to 80 ml liquid B5 medium. An inoculum size of 8 g produced the greatest biomass accumulation, dehydrocavidine and berberine productions, which was 13.1 g l(-1), 8.0 mg l(-1) and 4.1 mg l(-1), respectively. In response to various sucrose concentrations from 10 g l(-1) to 80 g l(-1), cultures with 60 g sucrose l(-1) not only produced the highest dry biomass (18.5 g l(-1)) but also the highest formation of dehydrocavidine (11.6 mg l(-1)) and berberine (7.6 mg l(-1)). These prepared cell suspension cultures provided a useful material for further regulation of alkaloid biosynthesis and for enhanced production of valuable alkaloids on a large scale.  相似文献   

13.
Calli were induced from the leaves and stems of Cephalotaxus fortunei Hook. f. on MS medium supplemented with 0. 1 mg/L KT and 3 mg/L NAA, and from which the suspension culture cell line of this plant was established for the first time. Factors such as light, pH value of the medium, concentration of plant hormone, carbon resources and addition of substances to the medium, which affect the growth of suspension cells were investigated. The results showed that suspension cells grew appropriately at pH 5.8 with a low concentration of sucrose or glucose, and a low level of NAA. No difference effect on cell growth was seen between sucrose and glucose. Phenylalanine and protein hydrolysate were not suitable for cell growth in suspension cultures, and light inhibited cell growth. A sensitive and rapid high-performance liquid chromatographic method has been developed for detecting the alkaloids in cultured cells. The results revealed the following contents of cephalotaxine and its anticancer esters in cultured cells: harringtonine, isoharringtonine and homoharringtonine. The total alkaloid production in cell suspension cultures was doubled as that in solid cultures. The relative amounts of cephalotaxine, drupacine, harringtonine, homoharringtonine and isoharringtonine in suspension cells was 22%, 6%, 8%, 23% and 41% respectively. In addition, other alkaloid as deoxyharringtonine and some steroids, including ergdst-5-en-3-ol. stigmasta-5, 22-dien-3-ol, β-sitosterin and 2-naphthalenamine have also been detected in cell cultures using GC/MS combined technique.  相似文献   

14.
Dimethyl sulphoxide (DMSO) has been used to permeabilize cells of Cinchona ledgeriana in suspension culture and promote the release of intracellular alkaloids. 5–6% v/v is required before any release is seen, and greater than 20% DMSO is required for full release. Even at these high levels of DMSO release is slow, taking in excess of seven hours to reach completion. Conditions which produce significant release of alkaloids have a deleterious effect on cells. Many of the membranes permeabilized did not recover their ability to selectively exclude compounds such as mannitol when the DMSO was removed. It is concluded that DMSO is not a suitable material for inducing alkaloid release in any biotechnological exploitation of alkaloid production by C. ledgeriana.Abbreviations DMSO Dimethyl sulphoxide - 2,4D 2,4-Dichlorophenoxyacetic acid  相似文献   

15.
The suitability of adsorbent polymeric resins, Amberlite XAD-4 and XAD-7 (Rohm and Hass, Inc.), was investigated for the accumulation of sanguinarine from Papaver somniferum cell cultures. The adsorption and desorption of sanguinarine from aqueous solution was most effective with XAD-7. In addition to sanguinarine, the resins were found to absorb growth regulators and vitamins from the culture medium. Growth inhibition was overcome by delaying for approximately 4 days resin addition after cell inoculation in fresh medium. Resin addition (5% wt/vol) to actively growing uneclicited cultures led to increases in sanguinarine production and release of 30% to 40% and 60%, respectively. The addition of resins to elicited cultures led to increases in alkaloid production of up to 50% to 85% with similar increases in alkaloid release as observed for nonelicited cells. Overall yield of sanguinarine increased from 21 mg . g biomass dry weight(-1) (dw) for elicited cultures to more than 39 mg . gdw(-1) when elicitation was combined with resin addition. Higher quantities of resin (10% to 20% wt/vol) increased marginally the release of sanguinarine into the medium, and on the resin, up to 85% of total production. The use of resin appears promesing for the development of a bioprocess for sanguinarine production by cultured plant cells. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
Habituated and tumorous Catharanthus roseus cells grown in the absence of hormones accumulated indole alkaloids. Total alkaloids and alkaloid pattern were the same when cells were cultured in medium without hormones or in alkaloid production medium with and without indole acetic acid. Treatment of cells with Pythium homogenate as elicitor did not increase total alkaloids or change the pattern of alkaloids produced. When either habituated or tumorous cells were grown in 1B5 medium after Gamborg et al (1968) containing 2,4-dichlorophenoxyacetic acid (2,4-D), their capacity to accumulate alkaloids decreased with time. The levels of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) specific activities were constant throughout growth except when cells were exposed to 2,4-D in 1B5 medium, where enzyme activities declined in step with the decrease in alkaloid accumulation. Neither habituated nor tumorous cell suspension cultures accumulated vindoline, nor could they be induced to produce this alkaloid by any of the given treatments.NRCC No. 27514  相似文献   

17.
Summary Sanguinaria canadensis L. plants were harvested from a local forest and calli were initiated from leaf explants. The production of benzophenanthridine alkaloids (i.e. sanguinarine, sanguilutine, sanguirubine, chelerythrine, chelilutine and chelirubine) by S. canadensis cell grown in modified B5 and IM2 media was compared to the alkaloid content of rhizomes. Sanguinarine accounted for approximately 80% of the total alkaloid content of cultured cells (1.3%,g g–1) while sanguinarine and sanguirubine accounted for 70% of rhizome alkaloids (9.0%, g g–1). Sanguinarine, chelirubine and chererythrine were the only known alkaloids detected in cultured S. canadensis cells. Maximum alkaloid production of cultures performed using B5 medium, containing half the original nitrate concentration, was observed following extracellular nitrate and sugar depletion. The scale-up of this culture was successfully performed in a 2-1 immobilization bioreactor. The consumption of sugar and nitrate as well as the oxygen (OTR) and carbon dioxide (CTR) transfer rates of the immobilized cell culture were monitored for 15 days. The maximum sugar and nitrate consumption rates were 1.8 g l–1 per day and 2.3 mm per day respectively. The maximum OTR and CTR of the immobilized cell culture were 0.8 mmol O2 l–1 h–1 and 0.95 mmol CO2 l–1 h–1 respectively. The sanguinarine yield of this culture reached 1.0% based on biomass dry weight (g g–1 dw) by day 15.  相似文献   

18.
Uncaria tomentosa cell suspension cultures were grown in a 2-L stirred tank bioreactor operating at a shear rate gamma(.)(avg)=86 s(-1). The cultures showed an early monophasic oxidative burst measured as H2O2 production (2.15 micromol H2O2 g(-1) dw). This response was followed by a transient production of monoterpenoid oxindole alkaloids (178 +/- 40 microg L(-1) at 24 h). At the stationary phase (144 h), the increase of the shear rate gamma(.)(avg) up to 150 s(-1) and/or oxygen tension up to 85% generated H2O2, restoring oxindole alkaloid production. U. tomentosa cells cultured in Erlenmeyer flasks also exhibited the monophasic oxidative burst but the H2O2 production was 16-fold lower and the alkaloids were not detected. These cells exposed to H2O2 generated in situ produced oxindole alkaloids reaching a maximum of 234 +/- 40 microg L(-1). A positive correlation was observed between the oxindole alkaloid production and the endogenous H2O2 level. On the other hand, addition of 1 microM diphenyleneiodonium (NAD(P)H oxidase inhibitor) or 10 microM sodium azide (peroxidases inhibitor) reduced both H2O2 production and oxindole alkaloids build up, suggesting that these enzymes might play a role in the oxidative burst induced by the hydrodynamic stress.  相似文献   

19.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

20.
The effect of methyl jasmonate (mJA), jasmonic acid and traumaticacid, derivatives of the octadecanoic pathway, on the productionof alkaloids by cell suspension cultures of Catharanthus roseusL. (G) Don was investigated. Cells cultured in the presenceof auxin (m-cells) did not accumulate alkaloids. The additionof exogenous mJA to m-cells restored the ability to producealkaloids. In cells cultured in a 2,4-D-starved medium (p-cells),exogenous mJA greatly increased alkaloid production. Similardata were obtained for jasmonic acid. In contrast, traumaticacid had no effect on alkaloid production. The sensitivity ofcell suspension cultures to exogenous mJA was restricted tothe first four days of subculture corresponding to the activegrowth phase, whereas the alkaloid accumulation occurred onlyduring the stationary phase of the subculture (days 6 to 10).When p-cells were treated with octadecanoic pathway inhibitors,the ability to produce alkaloids was strongly reduced. The additionof exogenous mJA always restored the ability to produce alkaloids.These data suggest that in response to auxin depletion, endogenousmJA could be produced and act by linking physiological eventsthus leading to alkaloid biosynthesis activation. (Received May 31, 1997; Accepted December 7, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号