首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Glial cell line‐derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c‐Ret, GFRα1, and GFRα2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6‐hydroxydopamine (6‐OHDA) transiently increased c‐Ret and GFRα1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c‐Ret and GFRα1 was downregulated. GFRα2 expression was differentially regulated, as it decreased only 6 days after 6‐OHDA injection. Triple‐labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c‐Ret, GFRα1, and GFRα2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6‐OHDA lesion. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 343–351, 2002  相似文献   

2.
Ligand-induced receptor oligomerization is a widely accepted mechanism for activation of cell-surface receptors. We investigated ligand-receptor interactions in the glial cell-line derived neurotrophic factor (GDNF) receptor complex, formed by the c-Ret receptor tyrosine kinase and the glycosylphosphatidylinositol (GPI)-anchored subunit GDNF family receptor alpha-1 (GFRalpha1). As only GFRalpha1 can bind GDNF directly, receptor complex formation is thought to be initiated by GDNF binding to this receptor. Here we identify an interface in GDNF formed by exposed acidic and hydrophobic residues that is critical for binding to GFRalpha1. Unexpectedly, several GDNF mutants deficient in GFRalpha1 binding retained the ability to bind and activate c-Ret at normal levels. Although impaired in binding GFRalpha1 efficiently, these mutants still required GFRalpha1 for c-Ret activation. These findings support a role for c-Ret in ligand binding and indicate that GDNF does not initiate receptor complex formation, but rather interacts with a pre-assembled GFRalpha1- c-Ret complex.  相似文献   

3.
Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85–95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.  相似文献   

4.
5.
Although both c-Ret and GFRalpha1 are required for responsiveness to GDNF, GFRalpha1 is widely expressed in the absence of c-Ret, suggesting alternative roles for "ectopic" sites of GFRalpha1 expression. We show that GFRalpha1 is released by neuronal cells, Schwann cells, and injured sciatic nerve. c-Ret stimulation in trans by soluble or immobilized GFRalpha1 potentiates downstream signaling, neurite outgrowth, and neuronal survival, and elicits dramatic localized expansions of axons and growth cones. Soluble GFRalpha1 mediates robust recruitment of c-Ret to lipid rafts via a novel mechanism requiring the c-Ret tyrosine kinase. Activated c-Ret associates with different adaptor proteins inside and outside lipid rafts. These results provide an explanation for the tissue distribution of GFRalpha1, supporting the physiological importance of c-Ret activation in trans as a novel mechanism to potentiate and diversify the biological responses to GDNF.  相似文献   

6.
Ledda F  Paratcha G  Ibáñez CF 《Neuron》2002,36(3):387-401
Immobilized and diffusible molecular cues regulate axon guidance during development. GFRalpha1, a GPI-anchored receptor for GDNF, is expressed as both membrane bound and secreted forms by accessory nerve cells and peripheral targets of developing sensory and sympathetic neurons during the period of target innervation. A relative deficit of GFRalpha1 in developing axons allows exogenous GFRalpha1 to capture GDNF and present it for recognition by axonal c-Ret receptors. Exogenous GFRalpha1 potentiates neurite outgrowth and acts as a long-range directional cue by creating positional information for c-Ret-expressing axons in the presence of a uniform concentration of GDNF. Soluble GFRalpha1 prolongs GDNF-mediated activation of cyclin-dependent kinase 5 (Cdk5), an event required for GFRalpha1-induced neurite outgrowth and axon guidance. Together with GDNF, target-derived GFRalpha1 can function in a non-cell-autonomous fashion as a chemoattractant cue with outgrowth promoting activity for peripheral neurons.  相似文献   

7.
The nigral GABAergic regulation of striatal dopamine release was investigated using voltammetry in freely moving rats. The local administration of muscimol (1 nM) in the substantia nigra pars compacta, but not in the substantia nigra pars reticulata, increased the striatal dopamine release. In contrast, the administration of baclofen (10 nM) in the substantia nigra pars reticulata, but not in the substantia nigra pars compacta, produced a decrease of the striatal dopamine release. Opposite effects were respectively observed after administration of GABAA and GABAB antagonists. These data lead us to suggest a differential presynaptic GABAergic control of the dopaminergic neurotransmission through GABAA receptors in the substantia nigra pars compacta, and GABAB receptors in the substantia nigra pars reticulata.  相似文献   

8.
Abstract: The dopaminergic phenotype of neurons in human substantia nigra deteriorates during normal aging, and loss of these neurons is prominent in Parkinson's disease. These degenerative processes are hypothesized to involve oxidative stress. To compare oxidative stress in the nigra and related regions, we measured carbonyl modifications of soluble proteins in postmortem samples of substantia nigra, basal ganglia, and prefrontal cortex from neurologically normal subjects, using an improved 2,4-dinitrophenylhydrazine assay. The protein carbonyl content was found to be about twofold higher in substantia nigra pars compacta than in the other regions. To further analyze this oxidative damage, the distribution of carbonyl groups on soluble proteins was determined by western immunoblot analysis. This method revealed that carbonyl content of the major proteins in each region was linearly dependent on molecular weight. This distribution raises the possibility that protein carbonyl content is controlled by a size-dependent mechanism in vivo. Our results suggest that oxidative stress is elevated in human substantia nigra pars compacta in comparison with other regions and that oxidative damage is higher within the dopaminergic neurons. Elevated oxidative damage may contribute to the degeneration of nigral dopaminergic neurons in aging and in Parkinson's disease.  相似文献   

9.
Brain derived neurotrophic factor (BDNF) has been shown to exert trophic effects on dopaminergic neurons against 6-hydroxydopamine (6-OHDA) in young rat. Since the degeneration of substantia nigra dopaminergic neurons that occurs in Parkinson's disease is more often than not confined to elderly individuals, it is of interest to determine whether the effects of BDNF against 6 hydroxydopamine (6-OHDA) in young rats can be extended to aged animals. 6-hydroxydopamine was stereotaxically injected into the striatum of young (3-months) and aged (24-months) rats, which were treated two hours earlier with BDNF. 6-OHDA results in almost complete destruction of substantia nigra pars compacta dopaminergic neurons. BDNF injection significantly changed apomorphine induced rotations from 132 +/- 15 to 181 +/- 10, staircase test from 73 +/- 2% to 61 +/- 3%, initiation time from 7 +/- 2 to 12 +/- 1 sec, and disengage time from 80 +/- 7 to 90 +/- 5 sec in young and aged animals, respectively. It is concluded that BDNF causes the limited behavior recovery of striatal DA systems from 6-OHDA toxicity in aged animals.  相似文献   

10.
Neurons of the substantia nigra show severe morphological changes in Parkinson's disease. Pathological alterations of cell bodies have been described, whereas those of neuronal processes have hardly been investigated. Golgi impregnation has been the chosen method for demonstrating neuronal processes and dendritic and somatic spines. We therefore used the Golgi-Braitenberg method to qualitatively and semi-quantitatively study the substantia nigra of eight patients with Parkinson's disease compared with eight control cases. Golgi impregnation of substantia nigra neurons was good in all control cases. In full agreement with the analysis of Braak and Braak (1986) three neuronal types within the substantia nigra were found. In cases of Parkinson's disease, severe pathological changes such as decrease of dendritic length, loss of dendritic spines and several types of dendritic varicosities were found only in the melanin-containing pars compacta neurons. Pars reticulata nerve cells were intact. These findings support the predominant role played by the dopaminergic efferent pathway in the degenerative process. The afferent pathway was not affected. This suggests that the substantia nigra lesion is primary in Parkinson's disease. Loss of neurons found in H & E sections corresponded to a lesser amount of impregnated pars compacta neurons in cases with Parkinson's disease when compared to controls. Evidences exist that the duration of the disease may be related to the extent of pathologically altered Golgi-impregnated pars compacta cells. The amount of Lewy bodies in H & E sections corresponded to the quantity of round varicosities in impregnated pars compacta neurons. These round dendritic varicosities were considered to be Lewy body inclusions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Dopaminergic neurons   总被引:2,自引:0,他引:2  
  相似文献   

12.
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 microg of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 microg of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 microg of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson's disease.  相似文献   

13.
6-Hydroxydopamine (6-OHDA)-induced loss of dopamine (DA) neurons has served to produce an animal model of DA neuron loss in Parkinson's disease. We report here the use of 6-OHDA to produce an in vitro model of this phenomena using dissociated cultures prepared from neonatal rat mesencephalon. Cultures were exposed to 6-OHDA (40-100 microm, 15 min) in an antioxidant medium, and DA and GABA neurons evaluated by immunocytochemistry. 6-OHDA induced morphological and biochemical signs of cell death in DA neurons within 3 h, followed by loss of tyrosine hydroxylase immunoreactive neurons within 2 days. In substantia nigra (SN) cultures, DA neurons were much more affected by 6-OHDA than were GABA neurons. In contrast, DA neurons from the ventral tegmental area were only lost at higher, non-specific concentrations of 6-OHDA. The effects of 6-OHDA on nigral DA neurons were blocked by inhibitors of high affinity DA transport and by z-DEVD-fmk (150 microm), a caspase inhibitor. Glial cell line-derived neurotrophic factor (GDNF) treatment reduced TUNEL labeling 3 h after 6-OHDA exposure, but did not prevent loss of DA neurons at 48 h. Thus, 6-OHDA can selectively destroy DA neurons in post-natal cultures of SN, acting at least in part by initiating caspase-dependent apoptosis, and this effect can be attenuated early but not late by GDNF.  相似文献   

14.
Sun X  Xiong Z  Zhang Y  Meng Y  Xu G  Xia Z  Li J  Zhang R  Ke Z  Xia Z  Hu Y 《Journal of neurochemistry》2012,120(6):1072-1083
Parkinson's disease is a chronic neurodegenerative movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. New therapeutic approaches aiming at delaying or reversing the neurodegenerative process are under active investigations. In this work, we found that harpagoside, an iridoid purified from the Chinese medicinal herb Scrophularia ningpoensis, could not only prevent but also rescue the dopaminergic neurodegeneration in MPTP/MPP(+) intoxication with promising efficacy. Firstly, in cultured mesencephalic neurons, harpagoside significantly attenuated the loss of TH-positive neuron numbers and the shortening of axonal length. Secondly, in a chronic MPTP mouse model, harpagoside dose-dependently improved the loco-motor ability (rotarod test), increased the TH-positive neuron numbers in the substantia nigra pars compacta (unbiased stereological counting) and increased the striatal DAT density ((125) I-FP-CIT autoradiography). Thirdly, harpagoside markedly elevated the GDNF mRNA and GDNF protein levels in MPTP/MPP(+) lesioned models. However, the protecting effect of harpagoside on the dopaminergic degeneration disappeared when the intrinsic GDNF action was blocked by either the Ret inhibitor PP1 or the neutralizing anti-GDNF antibody. Taken together, we conclude that harpagoside attenuates the dopaminergic neurodegeneration and movement disorder mainly through elevating glial cell line-derived neurotrophic factor.  相似文献   

15.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

16.
Since mitochondrial dysfunction plays an important role in the pathogenesis of dopaminergic neurodegeneration in Parkinson's disease, we determined the expression of genes related to mitochondrial function in the substantia nigra of mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a cDNA array. MPTP treatment significantly depleted striatal dopamine, but did not result in apparent neuronal loss in the substantia nigra at 3 and 18 days post-treatment. We also examined changes in genes in the hypothalamus, a region containing dopaminergic neurons that are relatively resistant to MPTP. Finally, we confirmed those genes identified by microarrays as differentially expressed in the substantia nigra but not in the hypothalamus using in situ hybridization. Our results demonstrated that MPTP significantly changed the expressions of six genes in nigral neurons, four of which were related to the mitochondrial electron transport chain: the NADH-ubiquinone oxidoreductase 13 kDa B subunit, the NADH-ubiquinone oxidoreductase MNLL subunit, cytochrome c, and the cytochrome c oxidase Va subunit. Two other differentially expressed genes were the dihydropyridine-sensitive L-type calcium channel alpha-2 subunit precursor and type III alpha-1 procollagen. None of these six genes are encoded by mitochondrial DNA. The potential significance of these gene alterations in the context of Parkinson's disease is discussed.  相似文献   

17.
We investigated the survival and the possible differentiation fate of the progenitors and immature neurons in the pars compacta of the substantia nigra (SNc) by intranigral injection of a glial cell line-derived neurotropic factor (GDNF) or glial cell line-derived neurotropic factor plus epidermal growth factor (EGF + GDNF) in 6-hydroxydopamine (6-OHDA)-lesioned rats. First, we performed behavioral tests by postural asymmetry and forelimb akinesia on the rats injected with 6-OHDA in striatum at day 7, and selected the qualified model according to the results. Then, intranigral GDNF or EGF + GDNF treatment was administered in the qualified PD model rats. On day 21, behavioral tests were performed with these rats; and then the rats were sacrificed for analyses of β-tubulin isotype-III (Tuj1), nestin, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) by immunohistochemistry and Western blotting. The results indicated that GDNF could promote the survival of the progenitor cells and immature neurons in rat SNc following 6-OHDA lesion. Moreover, EGF is capable of enhancing the survival effect of GDNF on the progenitor cells and immature neurons in SNc. On day 21, rapid functional recovery from the lesion-induced behavioral asymmetries was observed in the GDNF or EGF + GDNF-treated rats, and the numbers of TH-positive neurons increased in SNc, suggesting that the rats might generate new dopaminergic neurons. Thus, our study provides the new insight that the progenitors and immature neurons in SNc of 6-OHDA-lesioned rats might be able to differentiate toward the dopaminergic neurons fate subsequent to treatment with GDNF or EGF + GDNF.  相似文献   

18.
Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are structurally related neurotrophic factors that have both been shown to prevent the degeneration of dopaminergic neurons in vitro and in vivo. NTN and GDNF are thought to bind with different affinities to the GDNF family receptor alpha-2 (GFRalpha2), and can activate the same multi-component receptor system consisting of GFRalpha2, receptor tyrosine kinase Ret (RET) and NCAM. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that regulate gene expression through translational repression or RNA degradation. miRNAs have diverse functions, including regulating differentiation, proliferation and apoptosis in several organisms. It is currently unknown whether GDNF and NTN regulate the expression of miRNAs through activation of the same multi-component receptor system. Using quantitative real-time PCR, we measured the expression of some miRNA precursors in human BE(2)-C cells that express GFRalpha2 but not GFRalpha1. GDNF and NTN differentially regulate the expression of distinct miRNA precursors through the activation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2). This study showed that the expression of distinct miRNA precursors is differentially regulated by specific ligands through the activation of GFRalpha2.  相似文献   

19.
Gulley RL  Wood RL 《Tissue & cell》1971,3(4):675-690
Three distinct neurons were identified in the substantia nigra of the rat using Golgi, light, and electron microscopic techniques. A large neuron, found in the pars reticulata, is characterized by well-developed RER, a tubular cytoplasmic inclusion, and somatic and dendritec thorns. A medium-sized neuron, found in the pars compacta, has an eccentric nucleus, distinct Nissl bodies, and an inclusion composed of whorls of concentric cisternae. A small neuron, found in both nigral regions, contains a highly invaginated nucleus, fibrous nuclear inclusion, and paucity of cytoplasmic organelles. Its axon synapses around other nigral dendrites. The presence of these neurons was correlated with the efferent projections and function of the substantia nigra.  相似文献   

20.
We have isolated cDNA encoding a novel FGF (212 amino acids) from rat brain. Because this is the 20th documented member of the FGF family, we tentatively term it FGF-20. Among FGF family members, FGF-20 is most similar to FGF-9 and FGF-16 (70 and 62% amino acid identity, respectively). Human FGF-20 gene was found in the human genomic sequence mapped to the 8p21.3-p22 region. Human FGF-20 is highly identical to rat FGF-20 (95% amino acid identity). FGF-20 mRNA was preferentially expressed in rat brain among the adult major tissues examined. The localization of FGF-20 mRNA in rat brain was also examined by in situ hybridization. FGF-20 mRNA was preferentially expressed in the substantia nigra pars compacta. To examine the biological activity of FGF-20, recombinant rat FGF-20 was produced by insect cells infected with recombinant baculovirus containing rat FGF-20 cDNA. Recombinant rat FGF-20 enhanced the survival of midbrain dopaminergic neurons. The present results indicate that FGF-20 is a novel neurotrophic factor preferentially expressed in the substantia nigra pars compacta of rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号