首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inclusion complexation behavior of chiral members of cinchona alkaloid with beta- and gamma-cyclodextrins (1 and 2) and 6,6(')-trimethylenediseleno-bridged bis(beta-cyclodextrin) (3) was assessed by means of fluorescence and 2D-NMR spectroscopy. The spectrofluorometric titrations have been performed in aqueous buffer solution (pH 7.20) at 25.0 degrees C to determine the stability constants of the inclusion complexation of 1-3 with guest molecules (i.e., cinchonine, cinchonidine, quinine, and quinidine) in order to quantitatively investigate the molecular selective binding ability. The stability constants of the resulting complexes of 2 with guest molecules are larger than that of 1. As a result of cooperative binding, the stability constants of inclusion complexation of dimeric beta-cyclodextrin 3 with cinchonidine and cinchonine are higher than that of parent 1 by factor of 4.5 and 2.4, respectively. These results are discussed from the viewpoint of the size-fit and geometric complementary relationship between the host and guest.  相似文献   

2.
beta-Cyclodextrin dimers bearing an oxamido bis(2-benzoic) carboxyl linker (1) or its metal complexes (2 and 3) were newly synthesized, and their inclusion complexation behavior with a series of representative aliphatic oligopeptides, i.e., Leu-Gly, Gly-Leu, Gly-Pro, Glu-Glu, Gly-Gly, Gly-Gly-Gly, and Glu(Cys-Gly), was elucidated by means of UV/vis, circular dichroism, fluorescence, and 2D NMR spectroscopy in Tris-HCl buffer solution (pH 7.4) at 25 degrees C. The results obtained indicated that metallobridged bis(beta-cyclodextrin)s 2 or 3 could significantly enhance the original molecular binding abilities of parent bis(beta-cyclodextrin) 1 toward model substrates through the cooperative binding of two cyclodextrin moieties and the additional chelation effect supplied by the coordinated metal centers. It is interesting that hosts 2 and 3 displayed an entirely different fluorescence behavior upon complexation with guest oligopeptides. Among the guest peptides examined, 3 showed the highest complex formation constant of 68 200 M(-)(1) for Glu-Glu, up to 510-fold as compared with 1 (135 M(-)(1)), while 1 gave excellent molecular selectivity for Glu(Cys-Gly)/Glu-Glu pair, up to 51-fold. The molecular binding ability and selectivity were discussed from the viewpoints of the induced-fit and multiple recognition mechanism between host and guest.  相似文献   

3.
Bridged bis(beta-cyclodextrin) 1 with a pyridine-2,6-dicarboxamide linker was synthesized, and its inclusion complexation behavior with some aliphatic oligopeptides was investigated in aqueous buffer solution of pH 2.0 and 7.2 at 25 degrees C by means of circular dichroism, fluorescence, and 2D NMR techniques. The results show that the resulting inclusion complexes of 1 with oligopeptides adopt a cooperative "cyclodextrin-guest-cyclodextrin" sandwich binding mode in a neutral media, but a "guest-linker-cyclodextrin" coinclusion binding mode in an acidic media. These switchable binding modes consequently rationalize the binding ability of bis(beta-cyclodextrin) 1 at different pH values; that is, 1 shows the stronger association with oligopeptides in a neutral media. Because of the simultaneous contributions of hydrophobic, hydrogen bond, and electrostatic interactions, bis(beta-cyclodextrin) 1 affords length-selectivity up to 4.7 for the Gly-Gly/Gly-Gly-Gly pair at pH 2.0 and sequence-selectivity up to 4.2 for the Gly-Leu/Leu-Gly pair at pH 7.2. These phenomena are discussed from the viewpoint of the size-fit concept and the multipoint recognitions between host and guest.  相似文献   

4.
Two 6,6'-bis(beta-cyclodextrin)s linked by 2,2'-dithiobis[2-(benzoylamino)ethyleneamino] and 2,2'-dithiobis[2-(benzoylamino)diethylenetriamino] bridges (1 and 2) have been synthesized as cooperative multipoint recognition receptor models for non-aromatic oligopeptides. Their structures in solution and inclusion complexation mechanism are comprehensively investigated by means of circular dichroism, 2D NMR spectra and temperature-dependent fluorescence titrations. The results show that the cooperative 'host-linker-guest' binding mode and the extensive desolvation effect jointly contribute to the guest-induced fluorescence enhancement of bis(beta-cyclodextrin)s. Further examinations on the binding behavior of hosts 1-2 with a series of di- and tri-peptides demonstrate that bis(beta-cyclodextrin) 1 can recognize not only the size/shape of oligopeptides but also the dipeptide sequence, giving an exciting residue selectivity up to 37.5 for Gly-Gly-Gly/Glu-Glu pair and a high sequence selectivity up to 5.0 for Gly-Leu/Leu-Gly pair. These fairly good selectivities are discussed from the viewpoint of cooperative binding, multiple recognition and induced-fit interactions between host and guest.  相似文献   

5.
The inclusion complexation behavior of paclitaxel with a series of oligo(ethylenediamino) bridged bis(beta-cyclodextrin)s possessing bridge chains in different length (1-4) has been investigated in order to improve the water solubility of paclitaxel. It is found that only the long-tethered bis(beta-cyclodextrin)s 1 and 2 can form the inclusion complexes with paclitaxel, which are characterized by NMR, SEM, XRD, FT-IR, TG-DTA, DSC, and microcalorimetry technology. The results obtained show that bis(beta-cyclodextrin)s 1 and 2 are able to solubilize paclitaxel to high levels up to 2 and 0.9 mg/mL, respectively. The high complex stability of bis(beta-cyclodextrin) 1 and paclitaxel is discussed from thermodynamic viewpoint. Furthermore, the cytotoxicity of these complexes assessed using a human erythroleukemia K562 cell line indicates that the IC(50) value of 1/paclitaxel complex is 6.0 x 10(-10) mol/dm(3) (calculated as paclitaxel molar concentration), which means that the antitumor activity of 1/paclitaxel complex is better than that of parent paclitaxel (IC(50) value 9.8 x 10(-10) mol/dm(3)). This high antitumor activity, along with the satisfactory water solubility and high thermal stability of the 1/paclitaxel complex, will be potentially useful for its clinical application as a highly effective antitumor drug.  相似文献   

6.
Two mono-substituted beta-cyclodextrins and two bridged bis-beta-cyclodextrins, that is, mono(6-(2-aminoethylamino)-6-deoxy)-beta-cyclodextrin (1), mono(6-(2-(2-aminoethylamino)ethylamino)-6-deoxy)-beta-cyclodextrin (2), ethylene-1,2-diamino bis-6-(6-deoxy-beta-cyclodextrin) (3), and iminodiethylene-2,2'-diamino bis-6-(6-deoxy-beta-cyclodextrin) (4), were prepared from beta-cyclodextrin. Their binding ability with bovine serum albumin as a model protein was investigated through proton magnetic resonance (1H NMR), ultraviolet visible spectroscopy (UV-vis), circular dichroism (CD), and fluorescence spectroscopy. In the 1H NMR spectra of the modified cyclodextrins, the resolution of proton signals decreases after the addition of BSA. From the UV and CD spectra, it is found that both the UV absorption and the alpha-helix content of BSA increase with the concentration of the modified cyclodextrins. The protein-ligand interactions cause a fluorescence quenching. The quenching constants are determined using the Stern-Volmer equation to provide an observation of the binding affinity between modified cyclodextrins and BSA. All these results indicate that the modified cyclodextrins can interact with BSA and the bridged bis(beta-cyclodextrin)s (3 and 4) have much stronger interactions than the mono-substituted beta-cyclodextrins (1 and 2). The strong binding stability of bis-cyclodextrins should be attributed to the cooperative effect of two adjacent cyclodextrin moieties. Job's plot shows that the complex stoichiometries of BSA to the modified cyclodextrins were 1:4 for 1 and 2, as well as 1:3 for 3 and 4, respectively.  相似文献   

7.
The bis(alpha-D-mannopyranosyl)-[60]fullerene conjugate 3 was prepared by thermal coupling of C60 and either 2-azidoethyl 2,3,4,6-tetra-O-acetyl- or 2,3;4,6-di-O-isopropylidene-alpha-D-mannopyranoside (Scheme). Compound 3 was found to readily self-assemble. Dynamic-light-scattering (DLS) and atomic-force microscopy (AFM) experiments supported that the amphiphilic compound gives rise to nano-sized supramolecular structures during sugar deprotection (Ac-group removal) performed in MeOH/CH2Cl2 solution. Encapsulation studies with an aqueous suspension of 3 showed that the self-assembling structure envelopes Ba2+ and the fluorescent dye Acridine Red during its formation, which indicates that it resembles a bilayer vesicle or an unadulterated liposome with an inner hollow space. In addition to this notable property, the unique molecular geometry of the spatially arranged mannosyl surface residues of 3 gives rise to strong binding of the carbohydrate-recognizing lectin Con A. Hence, the polar amphiphilic end of 3 mimics the structure of 3,6-branched tri-alpha-D-mannoside (6; Fig. 3), a natural ligand of the Con A protein.  相似文献   

8.
Tang B  Liu F  Xu K  Tong L 《The FEBS journal》2008,275(7):1510-1517
A novel metallobridged bis(beta-cyclodextrin)s 2 [bis(beta-CD)s 2] was synthesized and characterized by means of (1)H NMR, IR, element analysis and redox iodometric titration. The fluorescence of metallobridged bis(beta-CD)s 2 was weak compared with bis(beta-CD)s 1 because of the paramagnetism of copper (II) ions. Glutathione was able to form complexes with copper (II) derived from the metallobridged bis(beta-CD)s 2. This competitive complexation with copper (II) may lead to a significant fluorescence recovery of the bis(beta-CD)s. Therefore, a rapid and simple spectrofluorimetric method was developed for the determination of glutathione. The analytical application for glutathione was investigated in NaCl/P(i) (pH 6.00) at room temperature. The linear range of the method was 0.30-20.0 micromol.L(-1) with a detection limit of 63.8 nmol.L(-1). There was no interference from the plasma constituents. The proposed method had been successfully used to determine glutathione in human plasma.  相似文献   

9.
The interactions of Alzheimer's amyloid beta-peptide with cyclodextrins were studied by (1)H NMR: the translational diffusion coefficient of the peptide and chemical shift changes were studied by the presence of variable concentrations of cyclodextrins. For the full-length peptide, Abeta(1-40), the combined results of translational diffusion and chemical shift changes are consistent with a model where aromatic side chains interact with beta-cyclodextrin with dissociation constants in the millimolar range. The diffusion data were consistent with two beta-cyclodextrin molecules bound per peptide. The binding occurs at two sites, at F(19) and/or F(20) and at Y(10), with dissociation constants K(d)(F) = 4.7 mM and K(d)(Y) = 6.6 mM, respectively, in 10 mM sodium phosphate, pH 7.4 and 298 K. Shorter Alzheimer peptide fragments were studied to measure specific affinities for different binding sites. The N-terminal fragment Abeta(1-9) with a putative binding site at F(4) does not show measurable affinity for beta-cyclodextrin. The fragment Abeta(12-28) has similar apparent affinity (K(d) = 3.8 mM) to beta-cyclodextrin as the full-length peptide Abeta(1-40). Here, the diffusion data suggests a one-to-one stoichiometry, and the binding site is F(19) and/or F(20). Both diffusion results and chemical shift changes give the same affinity. A variant Abeta(12-28)G(19)G(20) without phenylalanines does not bind to beta-cyclodextrin. Other potential ligands, alpha-cyclodextrin, gamma-cyclodextrin, nicotine, and nornicotine do not bind to the Abeta(12-28) fragment. This study shows that combined (1)H NMR diffusion and chemical shift changes may be used to quantitatively determine affinities and stoichiometries of weak interactions, using unlabeled ligands and hosts of comparable sizes.  相似文献   

10.
The synthesis and characterization of a novel tripodal mono-hydroxamate, bis catecholate siderophore mimic, N(alpha),-N(epsilon)-bis[2,3-dihydroxybenzoyl]-l-lysyl-(gamma-N-methyl-N-hydroxyamido)-l-glutamic acid (H(6)L), is described. The structure of H(6)L was established by 2D NMR and mass spectrometry. The chelation chemistry of H(6)L with respect to iron(III) is characterized in aqueous solution through determination of ligand pK(a) values and iron(III) binding constants using spectrophotometric and potentiometric titration techniques. Proton dependent iron(III)-ligand equilibrium constants were determined using a model based on the sequential protonation of the iron(III)-siderophore complex. These results were used to calculate the pH dependent speciation, the overall formation constant logbeta(110) (31.4) and pM value (18.3) for H(6)L with iron(III). The ability of H(6)L to deliver the essential nutrient iron to living cells is determined through growth promotion assays using various bacterial strains.  相似文献   

11.
Novel beta-cyclodextrin (beta-CD) derivatives, bearing a nicotinic or isonicotinic moiety, have been synthesized by a convenient method in 21 and 25% yields, respectively. The stability constants (K) and Gibbs free energy changes (-DeltaG degrees ) for the inclusion complexation of beta-cyclodextrin 6-O-mono(3-pyridinecarboxylate) (1), 6-O-mono(4-pyridinecarboxylate) (2), and 6-O-monobenzoate (3) with L- and D-tryptophan have been determined by spectrofluorome try in aqueous buffer solution (pH = 7.20) at 25.0 degrees C. All of the modifications dramatically enhanced the original K for beta-CD by a factor of 30-280 and interestingly switched the original enantiomer preference for L- to D-tryptophan, thus affording the inverted enantio-selectivities of K(L)/K(D) = 2.5 for beta-CD and K(D)/K(L) = 1.2-2.1 for the modified CDs 1-3. These results are discussed from the viewpoints of the size-fit and geometrical complementary relationship between the host and guest.  相似文献   

12.
The 1:1 inclusion complex of beta-cyclodextrin and benzamide was prepared and characterized by single crystal X-ray diffraction, PXRD, TGA, and IR. This complex crystallizes in the monoclinic P2(1) space group with unit cell constants a=15.4244(16), b=10.1574(11), c=20.557(2)A, beta=110.074(2) degrees , V=3025.1(6)A(3). The guest molecule projects into the beta-cyclodextrin cavity from the primary hydroxyl side. The amide group protrudes from the primary hydroxyl side and forms hydrogen bonds with the adjacent beta-cyclodextrin molecule. There are six crystallized water molecules, which play crucial roles in crystal packing.  相似文献   

13.
Liu Y  Chen GS  Zhang HY  Song HB  Ding F 《Carbohydrate research》2004,339(9):1649-1654
The crystallographic structure of the complex formed by beta-cyclodextrin with 1,10-phenanthroline has been studied by X-ray diffraction. The result shows that the complex adopts an uncommon 2:3 stoichiometry in solid state, that is, every complex unit contains three 1,10-phenanthroline molecules and two beta-cyclodextrin molecules, where two 1,10-phenanthroline molecules individually occupy two cyclodextrin cavities, and the third guest molecule is located in the interstitial space between two head-to-head cyclodextrin molecules. The intermolecular hydrogen bonds between the adjacent complex units further link these individual monomers to a channel-type assembly. Furthermore, 1H and 2D NMR spectroscopy has been employed to investigate the inclusion behavior between the host beta-cyclodextrin and guest 1,10-phenanthroline in aqueous solution.  相似文献   

14.
NMR spectroscopy has been used to elucidate the molecular basis of the action of caffeine (CAF) on the complexation with DNA of mutagens such as ethidium bromide, propidium iodide, proflavine and acridine orange, and anticancer drugs such as actinomycin D and daunomycin. The hetero-association of CAF and each of the aromatic ligands in 0.1 mol L(-1) phosphate buffer (pD=7.1) has been investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy and analysed in terms of a statistical-thermodynamic model, in which molecules form indefinite aggregates for both self-association and hetero-association. The analysis leads to determination of the equilibrium constants of hetero-association and to the values of the limiting chemical shifts of the heteroassociation of CAF with each of the aromatic molecules. The hetero-association constants between CAF and each of the aromatic drugs/dyes are found to be intermediate in magnitude between those for self-association of CAF and the corresponding drug/dye. The most probable structures of the 1:1 CAF + ligand hetero-association complexes have been determined from the calculated values of the induced limiting chemical shifts of the drug protons. Knowledge of the equilibrium constants for self-association of CAF and the aromatic ligands, for their hetero-association and their complexation with a DNA fragment, the deoxytetranucleotide 5'-d(TpGpCpA), enabled the relative content of each of the CAF-ligand and CAF-ligand-d(TGCA) complexes to be calculated as a function of CAF concentration in mixed solutions. It is concluded that, on addition of CAF to the solution, the decrease in binding of drug or mutagen with DNA is due both to competition for the binding sites by CAF and the aromatic molecules, and to formation of CAF-ligand hetero-association complexes in the mixed solution; the relative importance of each process depends on the drug or mutagen being considered.  相似文献   

15.
Wang EJ  Yan Z  Cai J 《Carbohydrate research》2007,342(11):1530-1534
The crystal structure of the inclusion complex of cyclomaltoheptaose (beta-cyclodextrin) with 4-hydroxybiphenyl was determined by single-crystal X-ray diffraction at 150K. The complex contains two cyclomaltoheptaose molecules, two 4-hydroxybiphenyl molecules, one ethanol molecule and fifteen water molecules in the asymmetric unit, and could be formulated as [2(C(42)H(70)O(35)).2(C(12)H(10)O).(C(2)H(6)O).15(H(2)O)]. It crystallized in the triclinic space group P1 with unit cell constants a=15.257(3), b=15.564(3), c=15.592(2)A, alpha=104.485(15) degrees , beta=101.066(14) degrees , gamma=104.330(17) degrees , V=3,343.6(10)A(3). In the crystal lattice, two beta-cyclodextrins form a head-to-head dimer jointed through hydrogen bonds. Two 4-hydroxybiphenyls were included in the dimer cavity with their hydroxyl groups protruding from two primary hydroxyl sides of the cyclodextrin molecules. The guest 4-hydroxybiphenyl molecules linked into a chain via a combination of an O-Hcdots, three dots, centeredO hydrogen bond and face-to-face pi-pi stacking of the phenyl rings. The crystal structure supports the calculation results indicating that the 2:2 inclusion complex formed by beta-cyclodextrin and 4-hydroxybiphenyl is the energetically favored structure.  相似文献   

16.
Compounds that couple molecular recognition of specific alkali metal ions with DNA damage may display selective cleavage of DNA under conditions of elevated alkali metal ion levels reported to exist in certain cancer cells. We have prepared a homologous series of compounds in which a DNA reactive moiety, a bis(propargylic) sulfone, is incorporated into an alkali metal ion binding crown ether ring. Using the alkali metal ion pricrate extraction assay, the ability of these crown ethers to bind Li(+), Na(+), and K(+) ions was determined. For the series of crown ethers, the association constants for Li(+) ions are generally low (< 2 x 10(4)M(-1)). Only two of the bis(propargylic) sulfone crown ethers associate with Na(+) or K(+) ions (K(a) 4-8 x 10(4)M(-1)), with little discrimination between Na(+) or K(+) ions. The ability of these compounds to cleave supercoiled DNA at pH 7.4 in the presence of Li(+), Na(+), and K(+) ions was determined. The two crown ethers that bind Na(+) and K(+) display a modest increase in DNA cleavage efficiency in the presence of Na(+) or K(+) ions as compared to Li(+) ions. These two bis(propargylic) sulfone crown ethers are also more cytotoxic against a panel of human cancer cell lines when compared to a non-crown ether macrocyclic bis(propargylic) sulfone.  相似文献   

17.
Genes encoding the minor A component of bovine calbindins D9k--the smallest protein known with a pair of EF-hand calcium-binding sites--with amino acid substitutions and/or deletions have been synthesized and expressed in Escherichia coli and characterized with different biophysical techniques. The mutations are confined to the N-terminal Ca2+-binding site and constitute Pro-20----Gly (M1), Pro-20----Gly and Asn-21 deleted (M2), Pro-20 deleted (M3), and Tyr-13----Phe (M4). 1H, 43Ca, and 113Cd NMR studies show that the structural changes induced are primarily localized in the modified region, with hardly any effects on the C-terminal Ca2+-binding site. The Ca2+ exchange rate for the N-terminal site changes from 3 s-1 in the wild-type protein (M0) and M4 to 5000 s-1 in M2 and M3, whereas there is no detectable variation in the Ca2+ exchange from the C-terminal site. The macroscopic Ca2+-binding constants have been obtained from equilibration in the presence of the fluorescent chelator 2-[[2-[bis(carboxymethyl)-amino]- 5-methylphenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline or by using a Ca2+-selective electrode. The Ca2+ affinity of M4 was similar to that of M0, whereas the largest differences were found for the second stoichiometric step in M2 and M3. Microcalorimetric data show that the enthalpy of Ca2+ binding is negative (-8 to -13 kJ.mol-1) for all sites except the N-terminal site in M2 and M3 (+5 kJ.mol-1). The binding entropy is strongly positive in all cases. Cooperative Ca2+ binding in M0 and M4 was established through the values of the macroscopic Ca2+-binding constants. Through the observed changes in the 1H NMR spectra during Ca2+ titrations we could obtain ratios between site binding constants in M0 and M4. These ratios in combination with the macroscopic binding constants yielded the interaction free energy between the sites delta delta G as -5.1 +/- 0.4 kJ.mol-1 (M0) and less than -3.9 kJ.mol-1 (M4). There is evidence (from 113Cd NMR) for site-site interactions also in M1, M2, and M3, but the magnitude of delta delta G could not be determined because of sequential Ca2+ binding.  相似文献   

18.
A new class of polydentate bis(imidazole)-thioether-thiol polydentate ligands has been synthesized by the reactions of functionalized primary amines with bis(2-imidazolyl)nitromethane. The molecules contain a bis(2-imidazolyl)methylamino group attached to chains of varying length with thiol (3, 23) and thioether/thiol (7,11,15,19) binding sites.  相似文献   

19.
Six ruthenium(II) complexes of the general form cis-alpha-[Ru(N4-tetradentate)(N2-bidentate)]Cl2 have been synthesized from the two related tetradentate ligands 1,6-di(2'-pyridyl)-2,5-dimethyl-2,5-diazahexane (picenMe2) and 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz2) and the bidentate ligands 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) and dipyrido[3,2-f:2'3'-h]quinoxaline (dpq). Synthetic intermediate species of the general form cis-alpha-[Ru(II)(N4-tetradentate)(DMSO)Cl][PF6] were isolated. The N4-tetradentate ligand picenMe2 formed only the cis-alpha stereoisomer, while picenBz2 formed both the cis-alpha and cis-beta stereoisomers. These latter stereoisomers were resolved by fractional crystallisation. Dimer self-association constants, K(D), were estimated from the concentration dependence of the 1H NMR shifts for some of these complexes in aqueous solutions at 25 degrees C. The values of K(D) ranged from 0.6 to 7.9 M(-1) and a relationship was observed between the aromatic surface area of the bidentate component and the degree to which self-association occurred, whereby a greater level of self-association correlates with a larger surface area for the bidentate ligand. Some of these complexes demonstrate an ability to bind to DNA that is consistent with intercalation of the bidentate molecular component between the base pairs of the DNA molecule. Using calf-thymus DNA, the equilibrium binding constants, K(B), were determined for some of the complexes using intrinsic methods and these ranged from 3.32 to 5.11 M(-1), the intercalating abilities of the different bidentate ligands being in the order dp q > phen > bipy. This relationship between aromatic surface area of the bidentate ligand and the degree of DNA binding activity is the same as that observed in the self-association study.  相似文献   

20.
The absorption and fluorescence emission spectral properties of 3-(4'-dimethylaminophenyl)-1-(2-thienyl)prop-2-en-1-one, abbreviated as DMATP, have been investigated in organized media of aqueous micellar and beta-cyclodextrin (CD) solutions. While the absorption spectra are less sensitive to the nature of the added surfactant or CD, the characteristics of the intramolecular charge transfer (ICT) fluorescence are highly sensitive to the properties of the medium. The ICT maximum is strongly blue-shifted with a great enhancement in the fluorescence quantum yield on adding micellar or CD solutions. This indicates the solubilization of DMATP in the micellar core and formation of an inclusion complex with beta-CD. The critical micelle concentration (CMC) as well as the polarity of the micellar core of SDS, CTAB and TX-100 have been determined. The CMC values are in good agreement with the reported values while the polarity is lower indicating that DMATP molecules are incorporated in the micellar core not at the micellar interface. The inclusion constants of binding of DMATP in micellar or CD have been also determined. The thermodynamic parameters of formation of DMATP:CD inclusion complex have been calculated from the temperature dependence of the fluorescence spectra of the formed complex. The negative enthalpy and free energy of formation indicate that the inclusion process is energetically favorable. The highly negative value of formation entropy (DeltaS = -162.3 J mol(-1) K(-1)) reflects the high restrictions imposed on the movement of both the host and included guest molecules which is consistent with the increase of the fluorescence yield and blue shift of the fluorescence maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号