首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermostable l-malate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was isolated and characterized, and its gene was cloned and sequenced. The enzyme is a homodimer with a molecular mass of 70 kDa and catalyzes preferentially the reduction of oxaloacetic acid with NADH. A. fulgidus l-malate dehydrogenase was stable for 5 h at 90° C, and the half-life at 101° C was 80 min. Thus, A. fulgidus l-malate dehydrogenase is the most thermostable l-malate dehydrogenase characterized to date. Addition of K2HPO4 (1 M) increased the thermal stability by 40%. The primary structure shows a high similarity to l-lactate dehydrogenase from Thermotoga maritima and gram-positive bacteria, and to l-malate dehydrogenase from the archaeon Haloarcula marismortui and other l-lactate-dehydrogenase-like l-malate dehydrogenases. Received: 20 November 1997 / Accepted: 28 February 1997  相似文献   

2.
NADP+-specific glutamate dehydrogenase (EC 1.4.1.4) was purified to homogeneity from the extremely thermophilic, strictly anaerobic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. The native enzyme (263 kDa) is composed of subunits of mol. mass 46 kDa, suggesting a hexameric structure. The temperature optimum for enzyme activity was > 95° C. The enzyme was highly thermostable, having a half-life of 140 min at 100° C. Potassium phosphate, KCl, and NaCl enhanced the thermal stability and increased the rate of activity three- to fourfold. The N-terminal 26-amino-acid sequence showed a high degree of similarity to glutamate dehydrogenases from Pyrococcus spp. and Thermococcus spp. Received: 25 March 1997 / Accepted: 11 July 1997  相似文献   

3.
Haloferax volcanii Ds-threo-isocitrate dehydrogenase (ICDH) was highly expressed in bacteria as inclusion bodies. The recombinant enzyme was refolded, purified and characterized, and was found to be NADP-dependent like the wild-type protein. Sequence alignment of several isocitrate dehydrogenases from evolutionarily divergent organisms including H. volcanii revealed that the amino acid residues involved in coenzyme specificity are highly conserved. Our objective was to switch the coenzyme specificity of halophilic ICDH by altering these conserved amino acids. We were able to switch coenzyme specificity from NADP+ to NAD+ by changing five amino acids by site-directed mutagenesis (Arg291, Lys343, Tyr344, Val350 and Tyr390). The five mutants of ICDH were overexpressed in Escherichia coli as inclusion bodies and each recombinant ICDH protein was refolded and purified, and its kinetic parameters were determined. Coenzyme specificity did not switch until all five amino acids were substituted.  相似文献   

4.
In this study, we report cDNA sequences of the cytosolic NADP-dependent isocitrate dehydrogenase for humans, mice, and two species of voles (Microtus mexicanus and Microtus ochrogaster). Inferred amino acid sequences from these taxa display a high level of amino acid sequence conservation, comparable to that of myosin beta heavy chain, and share known structural features. A Caenorhabditis elegans enzyme that was previously identified as a protein similar to isocitrate dehydrogenase is most likely the NADP-dependent cytosolic isocitrate dehydrogenase enzyme equivalent, based on amino acid similarity to mammalian enzymes and phylogenetic analysis. We also suggest that NADP-dependent isocitrate dehydrogenases characterized from alfalfa, soybean, and eucalyptus are most likely cytosolic enzymes. The phylogenetic tree of various isocitrate dehydrogenases from eukaryotic sources revealed that independent gene duplications may have given rise to the cytosolic and mitochondrial forms of NADP-dependent isocitrate dehydrogenase in animals and fungi. There appears to be no statistical support for a hypothesis that the mitochondrial and cytosolic forms of the enzyme are orthologous in these groups. A possible scenario of the evolution of NADP-dependent isocitrate dehydrogenases is proposed.   相似文献   

5.
NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was purified to homogeneity from the sulfate-reducing bacterium Desulfobacter vibrioformis, and shown to be a monomeric protein with a molecular mass of 80 kDa. The pH and temperature optima were 8.5 and 45°C, respectively. The N-terminal amino acid sequence (Thr, Glu, Thr, Ile, Arg, Trp, Thr, X, Thr, Asp, Glu, Ala, Pro, Leu, Leu, Ala, Thr) showed similarity with that of other known monomeric isocitrate dehydrogenases. Catalytically active isocitrate dehydrogenase from D. vibrioformis was obtained by activity staining after SDS-PAGE and removal of SDS from the gel. This technique revealed a NADP+-dependent monomeric enzyme in other Desulfobacter spp., Desulfuromonas acetoxidans and Chlorobium tepidium. These findings imply that monomeric isocitrate dehydrogenases are present in distantly related bacteria and indicate an early evolution of monomeric isocitrate dehydrogenases in the bacterial lineage.  相似文献   

6.
Methanobacterium thermoautotrophicum (strain Marburg) was found to contain two malate dehydrogenases, which were partially purified and characterized. One was specific for NAD+ and catalyzed the dehydrogenation of malate at approximately one-third of the rate of oxalacetate reduction, and the other could equally well use NAD+ and NADP+ as coenzyme and catalyzed essentially only the reduction of oxalacetate. Via the N-terminal amino acid sequences, the encoding genes were identified in the genome of M. thermoautotrophicum (strain ΔH). Comparison of the deduced amino acid sequences revealed that the two malate dehydrogenases are phylogenetically only distantly related. The NAD+-specific malate dehydrogenase showed high sequence similarity to l-malate dehydrogenase from Methanothermus fervidus, and the NAD(P)+-using malate dehyrogenase showed high sequence similarity to l-lactate dehydrogenase from Thermotoga maritima and l-malate dehydrogenase from Bacillus subtilis. A function of the two malate dehydrogenases in NADPH:NAD+ transhydrogenation is discussed. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

7.
When 10 strains of lactic acid bacteria were incubated with 5′-hydroxyaverantin (HAVN), a precursor of aflatoxins, seven of them converted HAVN to averufin; the same reaction is found in aflatoxin biosynthesis of aflatoxigenic fungi. These bacteria had a dehydrogenase that catalyzed the reaction from HAVN to 5′-oxoaverantin (OAVN), which was so unstable that it was easily converted to averufin. The enzyme was purified from Lactobacillus brevis IFO 12005. The molecular mass of the enzyme was 100 kDa on gel filtration chromatography and 33 kDa on SDS polyacrylamide gel electrophoresis (SDS–PAGE). The gene encoding the enzyme was cloned and sequenced. The deduced protein consisted of 249 amino acids, and its estimated molecular mass was 25,873, in agreement with that by time of flight mass spectrometry (TOF MS) analysis. Although the deduced amino acid sequence showed about 50% identity to those reported for alcohol dehydrogenases from L. brevis or L. kefir, the commercially available alcohol dehydrogenase from L. kefir did not convert HAVN to OAVN. Aspergillus parasiticus HAVN dehydrogenase showed about 25% identity in amino acid sequence with the dehydrogenase and also with these two alcohol dehydrogenases.  相似文献   

8.
A gene encoding an sn‐glycerol‐1‐phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2’ of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild‐type enzyme with NADPH, which suggests that the biased interactions around the C2’‐phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)‐dependent dehydrogenases. Proteins 2016; 84:1786–1796. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
When 10 strains of lactic acid bacteria were incubated with 5'-hydroxyaverantin (HAVN), a precursor of aflatoxins, seven of them converted HAVN to averufin; the same reaction is found in aflatoxin biosynthesis of aflatoxigenic fungi. These bacteria had a dehydrogenase that catalyzed the reaction from HAVN to 5'-oxoaverantin (OAVN), which was so unstable that it was easily converted to averufin. The enzyme was purified from Lactobacillus brevis IFO 12005. The molecular mass of the enzyme was 100 kDa on gel filtration chromatography and 33 kDa on SDS polyacrylamide gel electrophoresis (SDS-PAGE). The gene encoding the enzyme was cloned and sequenced. The deduced protein consisted of 249 amino acids, and its estimated molecular mass was 25,873, in agreement with that by time of flight mass spectrometry (TOF MS) analysis. Although the deduced amino acid sequence showed about 50% identity to those reported for alcohol dehydrogenases from L. brevis or L. kefir, the commercially available alcohol dehydrogenase from L. kefir did not convert HAVN to OAVN. Aspergillus parasiticus HAVN dehydrogenase showed about 25% identity in amino acid sequence with the dehydrogenase and also with these two alcohol dehydrogenases.  相似文献   

10.
A gene encoding NADP-dependent Ds-threo-isocitrate dehydrogenase was isolated from Haloferax volcanii genomic DNA by using a combination of polymerase chain reaction and screening of a lambda EMBL3 library. Analysis of the nucleotide sequence revealed an open reading frame of 1260 bp encoding a protein of 419 amino acids with 45837 Da molecular mass. This sequence is highly similar to previously sequenced isocitrate dehydrogenases. In the alignment of the amino acid sequences with those from several archaeal and mesophilic NADP-dependent isocitrate dehydrogenases, the residues involved in dinucleotide binding and isocitrate binding are well conserved. We have developed methods for the expression in Escherichia coli and purification of the enzyme from H. volcanii. This expression was carried out in E. coli as inclusion bodies using the cytoplasmic expression vector pET3a. The enzyme was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing EDTA, MgCl(2) and 3 M NaCl. Maximal activity was obtained after several hours incubation at room temperature.  相似文献   

11.
A gene encoding a new d-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although α-ketoisoleucine was the most favourable of all α-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity.  相似文献   

12.
A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent K m values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (k cat/K m) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.  相似文献   

13.

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.

  相似文献   

14.
The archaeal leuB gene encoding isopropylmalate dehydrogenase of Sulfolobus sp. strain 7 was cloned, sequenced, and expressed in Escherichia coli. The recombinant Sulfolobus sp. enzyme was extremely stable to heat. The substrate and coenzyme specificities of the archaeal enzyme resembled those of the bacterial counterparts. Sedimentation equilibrium analysis supported an earlier proposal that the archaeal enzyme is homotetrameric, although the corresponding enzymes studied so far have been reported to be dimeric. Phylogenetic analyses suggested that the archaeal enzyme is homologous to mitochondrial NAD-dependent isocitrate dehydrogenases (which are tetrameric or octameric) as well as to isopropylmalate dehydrogenases from other sources. These results suggested that the present enzyme is the most primitive among isopropylmalate dehydrogenases belonging in the decarboxylating dehydrogenase family.  相似文献   

15.
Methanogenic archaea growing on ethanol or isopropanol as the electron donor for CO2 reduction to CH4 contain either an NADP-dependent or a coenzyme F420-dependent alcohol dehydrogenase. We report here that in both groups of methanogens, the N 5, N 10-methylenetetrahydromethanopterin dehydrogenase and the N 5, N 10-methylenetetrahydromethanopterin reductase, two enzymes involved in CO2 reduction to CH4, are specific for F420. This raised the question how F420H2 is regenerated in the methanogens with an NADP-dependent alcohol dehydrogenase. We found that these organisms contain catabolic activities of an enzyme catalyzing the reduction of F420 with NADPH. The F420-dependent NADP reductase from Methanogenium organophilum was purified and characterized. The N-terminal amino acid sequence showed 42% sequence identity to a putative gene product in Methanococcus jannaschii, the total genome of which has recently been sequenced. Received: 12 May 1997 / Accepted: 1 July 1997  相似文献   

16.
Although the presence of an enzyme that catalyzes beta-decarboxylating dehydrogenation of homoisocitrate to synthesize 2-oxoadipate has been postulated in the lysine biosynthesis pathway through alpha-aminoadipate (AAA), the enzyme has not yet been analyzed at all, because no gene encoding the enzyme has been identified until recently. A gene encoding a protein with a significant amino acid sequence identity to both isocitrate dehydrogenase and 3-isopropylmalate dehydrogenase was cloned from Thermus thermophilus HB27. The gene product produced in recombinant Escherichia coli cells demonstrated homoisocitrate dehydrogenase (HICDH) activity. A knockout mutant of the gene showed an AAA-auxotrophic phenotype, indicating that the gene product is involved in lysine biosynthesis through AAA. We therefore named this gene hicdh. HICDH, the gene product, did not catalyze the conversion of 3-isopropylmalate to 2-oxoisocaproate, a leucine biosynthetic reaction, but it did recognize isocitrate, a related compound in the tricarboxylic acid cycle, as well as homoisocitrate as a substrate. It is of interest that HICDH catalyzes the reaction with isocitrate about 20 times more efficiently than the reaction with the putative native substrate, homoisocitrate. The broad specificity and possible dual function suggest that this enzyme represents a key link in the evolution of the pathways utilizing citrate derivatives. Site-directed mutagenesis study reveals that replacement of Arg(85) with Val in HICDH causes complete loss of activity with isocitrate but significant activity with 3-isopropylmalate and retains activity with homoisocitrate. These results indicate that Arg(85) is a key residue for both substrate specificity and evolution of beta-decarboxylating dehydrogenases.  相似文献   

17.
Alcohol dehydrogenase (ADH; EC: 1.1.1.1) is a key enzyme in production and utilization of ethanol. In this study, the gene encoding for ADH of the haloalkaliphilic archaeon Natronomonas pharaonis (NpADH), which has a 1,068-bp open reading frame that encodes a protein of 355 amino acids, was cloned into the pET28b vector and was expressed in Escherichia coli. Then, NpADH was purified by Ni-NTA affinity chromatography. The recombinant enzyme showed a molecular mass of 41.3 kDa by SDS-PAGE. The enzyme was haloalkaliphilic and thermophilic, being most active at 5 M NaCl or 4 M KCl and 70°C, respectively. The optimal pH was 9.0. Zn2+ significantly inhibited activity. The K m value for acetaldehyde was higher than that for ethanol. It was concluded that the physiological role of this enzyme is likely the catalysis of the oxidation of ethanol to acetaldehyde.  相似文献   

18.
One of the most remarkable biochemical differences between the members of two domains Archaea and Bacteria is the stereochemistry of the glycerophosphate backbone of phospholipids, which are exclusively opposite. The enzyme responsible to the formation of Archaea-specific glycerophosphate was found to be NAD(P)-linked sn-glycerol-1-phosphate (G-1-P) dehydrogenase and it was first purified from Methanobacterium thermoautotrophicum cells and its gene was cloned. This structure gene named egsA (enantiomeric glycerophosphate synthase) consisted of 1,041 bp and coded the enzyme with 347 amino acid residues. The amino acid sequence deduced from the base sequence of the cloned gene (egsA) did not share any sequence similarity except for NAD-binding region with that of NAD(P)-linked sn-glycerol-3-phosphate (G-3-P) dehydrogenase of Escherichia coli which catalyzes the formation of G-3-P backbone of bacterial phospholipids, while the deduced protein sequence of the enzyme revealed some similarity with bacterial glycerol dehydrogenases. Because G-1-P dehydrogenase and G-3-P dehydrogenase would originate from different ancestor enzymes and it would be almost impossible to interchange stereospecificity of the enzymes, it seems likely that the stereostructure of membrane phospholipids of a cell must be maintained from the time of birth of the first cell. We propose here the hypothesis that Archaea and Bacteria were differentiated by the occurrence of cells enclosed by membranes of phospholipids with G-1-P and G-3-P as a backbone, respectively. Received: 24 March 1997 / Accepted: 21 May 1997  相似文献   

19.
The gene encoding phenylacetaldehyde reductase (PAR), a useful biocatalyst for producing chiral alcohols, was cloned from the genomic DNA of the styrene-assimilating Corynebacterium sp. strain ST-10. The gene contained an opening reading frame consisting of 1,158 nucleotides corresponding to 385 amino acid residues. The subunit molecular weight was calculated to be 40,299, which was in agreement with that determined by polyacrylamide gel electrophoresis. The enzyme was sufficiently expressed in recombinant Escherichia coli cells for practical use and purified to homogeneity by three-column chromatography steps. The predicted amino acid sequence displayed only 20–29% identity with zinc-containing, NAD+-dependent, long-chain alcohol dehydrogenases. Nevertheless, the probable NAD+- and zinc-binding sites are conserved although one of the three catalytic zinc-binding residues of the zinc-containing, long-chain alcohol dehydrogenases was substituted by Asp in PAR. The protein contains 7.6 mol zinc/mol tetramer. Therefore, the enzyme was considered as a new member of zinc-containing, long-chain alcohol dehydrogenases with a particular and broad substrate specificity. Received: 5 March 1999 / Received last revision: 10 May 1999 / Accepted: 16 May 1999  相似文献   

20.
《Gene》1998,215(2):431-438
We have cloned and sequenced the genes encoding two chaperonin subunits (Cpn-α and Cpn-β), from Archaeoglobus fulgidus, a sulfate-reducing hyperthermophilic archaeon. The genes encode proteins of 545 amino acids with calculated Mr of 58 977 and 59 683. Both proteins have been identified in cytoplasmic fractions of A. fulgidus by Western analysis using antibodies raised against one of the subunits expressed in Escherichia coli, and by N-terminal amino acid sequencing of chaperonin complexes purified by immunoprecipitation. The chaperonin genes appear to be under heat shock regulation, as both proteins accumulate following temperature shift-up of growing A. fulgidus cells, implying a role of the chaperonin in thermoadaptation. Canonical Box A and Box B archaeal promoter sequences, as well as additional conserved putative signal sequences, are located upstream of the start codons. A phylogenetic analysis using all the available archaeal chaperonin sequences, suggests that the α and β subunits are the results of late gene duplications that took place well after the establishment of the main archaeal evolutionary lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号