首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
A prominent subset of the hepatic innate immune system is alpha-galactosylceramide (alphaGalCer)-reactive, (CD4(+) and CD4(-)CD8(-)) CD1d-restricted NKT cells. We investigated in C57BL/6 (B6) mice which hepatic cell type stimulates hepatic NKT cell activation. Surface expression of CD1d but not CD40, CD80, or CD86 costimulator molecules was detected in hepatocytes. Pulsed in vitro or in vivo with alphaGalCer, hepatocytes triggered IL-4 release by liver NKT cells but required exogenous IL-12 to trigger IFN-gamma release by NKT cells. Liver dendritic cells (DC) isolated from nontreated mice showed low surface expression of MHC, CD1d, and CD40, CD80, or CD86 costimulator molecules that were strikingly up-regulated after alphaGalCer injection. Although liver CD11c(+) DC displayed lower CD1d surface expression than hepatocytes, they were potent stimulators of IFN-gamma and IL-4 release by liver NKT when pulsed with alphaGalCer in vitro or in vivo. Liver DC are thus potent stimulators of proinflammatory cytokine release by NKT cells, are activated themselves in the process of NKT cell activation, and express an activated phenotype after the NKT cell population is eliminated following alphaGalCer stimulation.  相似文献   

2.
NKT and NK cells are important immune regulatory cells. The only efficient means to selectively stimulate NKT cells in vivo is alpha-galactosylceramide (alphaGalCer). However, alphaGalCer effectively stimulates and then diminishes the number of detectable NKT cells. It also exhibits a potent, indirect ability to activate NK cells. We have now discovered another ceramide compound, beta-galactosylceramide (betaGalCer) (C12), that efficiently diminishes the number of detectable mouse NKT cells in vivo without inducing significant cytokine expression or activation of NK cells. Binding studies using CD1d tetramers loaded with betaGalCer (C12) demonstrated significant but lower intensity binding to NKT cells when compared with alphaGalCer, but both ceramides were equally efficient in reducing the number of NKT cells. However, betaGalCer (C12), in contrast to alphaGalCer, failed to increase NK cell size, number, and cytolytic activity. Also in contrast to alphaGalCer, betaGalCer (C12) is a poor inducer of IFN-gamma, TNF-alpha, GM-CSF, and IL-4 gene expression. These qualitative differences in NKT perturbation/NK activation have important implications for delineating the unique in vivo roles of NKT vs NK cells. Thus, alphaGalCer (which triggers NKT cells and activates NK cells) efficiently increases the resistance to allogeneic bone marrow transplantation while betaGalCer (C12) (which triggers NKT cells but does not activate NK cells) fails to enhance bone marrow graft rejection. Our results show betaGalCer (C12) can effectively discriminate between NKT- and NK-mediated responses in vivo. These results indicate the use of different TCR-binding ceramides can provide a unique approach for understanding the intricate immunoregulatory contributions of these two cell types.  相似文献   

3.
Alpha-glycosylceramides, such as alpha-galactosylceramide and alpha-glucosylceramide, induce antitumor immunity in various murine cancer models. In the murine hepatic metastasis model, V alpha 14 TCR+NK1.1+ T cells, which accumulate preferentially in the liver, are considered to play a key role in the induction of antitumor immunity by alpha-glycosylceramides. We recently reported that V alpha 24 TCR+ NKT cells, the human homologues of murine V alpha 14 TCR+NK1.1+ cells, are rarely seen among freshly isolated human hepatic lymphocytes. Therefore, it is important to examine whether alpha-glycosylceramides also enhance the antitumor cytotoxicity of human hepatic lymphocytes, as they have been shown to do in murine systems, to determine the usefulness of alpha-glycosylceramides in cancer immunotherapy in humans. Here, we show that alpha-glycosylceramides greatly enhance the cytotoxicity of human hepatic lymphocytes obtained from cancer patients against the tumor cell lines, K562 and Colo201, in vitro. The direct effector cells of the elicited cytotoxicity were CD3-CD56+ NK cells. Even though V alpha 24 TCR+NKT cells proliferated remarkably in response to alpha-glycosylceramides, they did not contribute directly to the cytotoxicity. Our observations strongly suggest the potential usefulness of alpha-glycosylceramides for immunotherapy of liver cancer in humans based on their ability to activate CD3-CD56+ NK cells in the liver.  相似文献   

4.
Unlike CD1d-restricted NK1.1(+)TCRalphabeta(+) (NKT) cells, which have been extensively studied, little is known about CD1d-independent NKT cells. To characterize their functions, we analyzed NKT cells in beta(2)-microglobulin (beta(2)m)-deficient B6 mice. They are similar to NK cells and expressed NK cell receptors, including Ly49, CD94/NKG2, NKG2D, and 2B4. NKT cells were found in normal numbers in mice that are deficient in beta(2)m, MHC class II, or both. They were also found in the male HY Ag-specific TCR-transgenic mice independent of positive or negative selection in the thymus. For functional analysis of CD1d-independent NKT cells, we developed a culture system in which CD1d-independent NKT cells, but not NK, T, or most CD1d-restricted NKT cells, grew in the presence of an intermediate dose of IL-2. IL-2-activated CD1d-independent NKT cells were similar to IL-2-activated NK cells and efficiently killed the TAP-mutant murine T lymphoma line RMA-S, but not the parental RMA cells. They also killed beta(2)m-deficient Con A blasts, but not normal B6 Con A blasts, indicating that the cytotoxicity is inhibited by MHC class I on target cells. IL-2-activated NKT cells expressing transgenic TCR specific for the HY peptide presented by D(b) killed RMA-S, but not RMA, cells. They also killed RMA (H-2(b)) cells that were preincubated with the HY peptide. NKT cells from beta(2)m-deficient mice, upon CD3 cross-linking, secreted IFN-gamma and IL-2, but very little IL-4. Thus, CD1d-independent NKT cells are significantly different from CD1d-restricted NKT cells. They have hybrid phenotypes and functions of NK cells and T cells.  相似文献   

5.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

6.
CD4(+) T cells produce IFN-gamma contributing to corneal perforation in C57BL/6 (B6) mice after Pseudomonas aeruginosa infection. To determine the role of NK and NKT cells, infected corneas of B6 mice were dual immunolabeled. Initially, more NKT than NK cells were detected, but as disease progressed, NK cells increased, while NKT cells decreased. Therefore, B6 mice were depleted of NK/NKT cells with anti-asialo GM1 or anti-NK1.1 Ab. Either treatment accelerated time to perforation, increased bacterial load and polymorphonuclear neutrophils, but decreased IFN-gamma and IL-12p40 mRNA expression vs controls. Next, RAG-1 knockout (-/-; no T/NKT cells), B6.TCR Jalpha281(-/-) (NKT cell deficient), alpha-galactosylceramide (alphaGalCer) (anergized NKT cells) injected and IL-12p40(-/-) vs B6 controls were tested. IFN-gamma mRNA was undetectable in RAG-1(-/-)- and alphaGalCer-treated mice at 5 h and was significantly reduced vs controls at 1 day postinfection. It also was reduced significantly in B6.TCR Jalpha281(-/-), alphaGalCer-treated, and IL-12p40(-/-) (activated CD4(+) T cells also reduced) vs control mice at 5 days postinfection. In vitro studies tested whether endotoxin (LPS) stimulated Langerhans cells and macrophages (Mphi; from B6 mice) provided signals to activate NKT cells. LPS up-regulated mRNA expression for IL-12p40, costimulatory molecules CD80 and CD86, NF-kappaB, and CD1d, and addition of rIFN-gamma potentiated Mphi CD1d levels. Together, these data suggest that Langerhans cell/Mphi recognition of microbial LPS regulates IL-12p40 (and CD1d) driven IFN-gamma production by NKT cells, that IFN-gamma is required to optimally activate NK cells to produce IFN-gamma, and that depletion of both NKT/NK cells results in earlier corneal perforation.  相似文献   

7.
PURPOSE: We aimed to determine the effects of human umbilical cord blood (UCB)-derived natural killer T (NKT) cells as immunological effectors against hematological malignancies, as well as auto- or allo-dendritic cells (DCs) or EB transformed cell lines (EBCLs). MATERIALS: TCRValpha24(+) Vbeta11(+) UCB- or PB-NKT cells were isolated by sorting and activated by alpha-galactosylceramide-pulsed autologous DCs. UCB-NK cells were induced from CD34(+) cells by stem cell factor plus IL-15. UCB-T cells were primarily activated by anti-CD3 monoclonal antibody. All those effectors were cultured with IL-2 (100 U/ml), and their cytotoxic activities were evaluated by (51)Cr-release assay. UCB-NKT cells were cultured with IL-12, IL-18 or higher dose of IL-2 (1000 U/ml), and again tested for the cytotoxicity against selected targets. RESULTS: UCB-NKT cells exhibited a pattern of killing activity against various hematological malignancies similar to that of UCB-NK cells, but could not kill K562, which was a vulnerable target for NK cells. The level of activity was quite similar to that of PB-NKT cells. In contrast, OKT-3-activated UCB-T lymphocytes showed a stronger and wider spectrum of killing compared with UCB-NK or NKT cells. IL-12, IL-18 or a higher dose of IL-2 upregulated the activity; however several targets, including fresh leukemic cells, still remained resistant. NKT cells killed auto- or allo-DCs at a level similar to that of T cells, but could not kill allo-EBCLs, which were efficiently killed by T cells. While NK cells showed only marginal or no killing against DC or EBCLs. DISCUSSION: The anti-cancer activity of human NKT cells depends on the concentrations or the combination of Th1-cytokines. Basically, those cells might not be contributing to the immune surveillance of hematological malignancies, as shown by a relatively low cytotoxicity against malignant cells, together with the quite strong killing against auto-DCs.  相似文献   

8.
Dendritic cell (DC)-dependent activation of liver NKT cells triggered by a single i.v. injection of a low dose (10-100 ng/mouse) of alpha-galactosyl ceramide (alphaGalCer) into mice induces liver injury. This response is particularly evident in HBs-tg B6 mice that express a transgene-encoded hepatitis B surface Ag in the liver. Liver injury following alphaGalCer injection is suppressed in mice depleted of NK cells, indicating that NK cells play a role in NK T cell-initiated liver injury. In vitro, liver NKT cells provide a CD80/86-dependent signal to alphaGalCer-pulsed liver DC to release IL-12 p70 that stimulates the IFN-gamma response of NKT and NK cells. Adoptive transfer of NKT cell-activated liver DC into the liver of nontreated, normal (immunocompetent), or immunodeficient (RAG(-/-) or HBs-tg/RAG(-/-)) hosts via the portal vein elicited IFN-gamma responses of liver NK cells in situ. IFN-beta down-regulates the pathogenic IL-12/IFN-gamma cytokine cascade triggered by NKT cell/DC/NK cell interactions in the liver. Pretreating liver DC in vitro with IFN-beta suppressed their IL-12 (but not IL-10) release in response to CD40 ligation or specific (alphaGalCer-dependent) interaction with liver NKT cells and down-regulated the IFN-gamma response of the specifically activated liver NKT cells. In vivo, IFN-beta attenuated the NKT cell-triggered induction of liver immunopathology. This study identifies interacting subsets of the hepatic innate immune system (and cytokines that up- and down-regulate these interactions) activated early in immune-mediated liver pathology.  相似文献   

9.
alpha-Galactosylceramide (alpha-GalCer) is a glycolipid with potent antitumor properties that binds to CD1d molecules and activates mouse Valpha14 and human Valpha24 NKT cells. Surprisingly, we found that, as early as 90 min after alpha-GalCer injection in vivo, NK cells also displayed considerable signs of activation, including IFN-gamma production and CD69 induction. NK activation was not observed in RAG- or CD1-deficient mice, and it was decreased by pretreatment with anti-IFN-gamma Abs, suggesting that, despite its rapid induction, it was a secondary event that depended on IFN-gamma release by NKT cells. At later time points, B cells and CD8 T cells also began to express CD69. These findings identify a high-speed communication network between the innate and adaptive immune systems in vivo that is initiated upon NKT cell activation. They also suggest that the antitumor effects of alpha-GalCer result from the sequential recruitment of distinct innate and adaptive effector lymphocytes.  相似文献   

10.
The common gamma-chain cytokine, IL-21, is produced by CD4(+) T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag alpha-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with alpha-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.  相似文献   

11.
Toll-like receptor (TLR) ligands are potent inducers of the innate immune system, of which NK and NKT cells play an important role. We examined the direct activation of highly purified human NK and/or NKT cells with known TLR ligands. NK/NKT cells were positive for all known TLR mRNA (TLR1-10). Ligands for TLR2-5 induced production of significant amounts of IFN-gamma by purified NK cells. However, a TLR9 ligand failed to induce significant levels of the cytokine. NK cells were depleted from PBMCs to confirm that they were the main source of IFN-gamma following treatment with TLR ligands, which resulted in a significant decrease in cytokines. The direct effects of TLR ligands on NK cytotoxicity were determined using 51Cr-labeled K562 target cells. Ligands for TLR2-5 were potent inducers of NK cell cytotoxicity, a TLR9 ligand was not. Our results suggest that TLR ligands can directly stimulate and enhance NK cell cytokine production and induce cytotoxic activities.  相似文献   

12.
Human V alpha 24+ NKT cells with an invariant TCR (V alpha 24-J alpha Q) have been shown to be specifically activated by synthetic glycolipids such as alpha-galactosylceramide and alpha-glucosylceramide in a CD1d-restricted and V alpha 24 TCR-mediated manner. We recently characterized V alpha 24+ CD4- CD8- double negative (DN) NKT cells using alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Here, we compare V alpha 24+ CD4+ NKT cells with human V alpha 24+ DN NKT cells from the same donor using alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Human V alpha 24+ CD4+ NKT cells were phenotypically and functionally similar to the human V alpha 24+ DN NKT cells characterized previously. Both of them use V alpha 24-J alpha Q-V beta 11 TCR and express CD161 (NKR-P1A), but not the other NK receptors tested so far. They also produce cytokines such as IL-4 and IFN-gamma, and, in regard to IL-4 production, V alpha 24+ CD4+ NKT cells produce more IL-4 than V alpha 24+ DN NKT cells. The cells exhibit marked cytotoxic activity against the U937 tumor cell line, but not against the NK target cell line, K562. Although at least some of the factors responsible for the stimulation of V alpha 24+ NKT cells have been clarified, little is known regarding the killing phase of these cells. Here we show that the cytotoxic activity of V alpha 24+ NKT cells against U937 cells is mediated mainly through the perforin pathway and that ICAM-1/LFA-1 as well as CD44/hyaluronic acid interactions are important for the effector phase of V alpha 24+ NKT cell-mediated cytotoxicity against U937 cells.  相似文献   

13.
NKT cells are known to regulate effector T cell immunity during tolerance, autoimmunity, and antitumor immunity. Whether age-related changes in NKT cell number or function occur remains unclear. Here, we investigated whether young vs aged (3 vs 22 mo old) mice had different numbers of CD1d-restricted NKT cells and whether activation of NKT cells by CD1d in vivo contributed to age-related suppression of T cell immunity. Flow cytometric analyses of spleen and LN cells revealed a 2- to 3-fold increase in the number of CD1d tetramer-positive NKT cells in aged mice. To determine whether NKT cells from aged mice differentially regulated T cell immunity, we first examined whether depletion of NK/NKT cells affected the proliferative capacity of splenic T cells. Compared with those from young mice, intact T cell preparations from aged mice had impaired proliferative responses whereas NK/NKT-depleted preparations did not. To examine the specific contribution of NKT cells to age-related T cell dysfunction, Ag-specific delayed-type hypersensitivity and T cell proliferation were examined in young vs aged mice given anti-CD1d mAb systemically. Compared with young mice, aged mice given control IgG exhibited impaired Ag-specific delayed-type hypersensitivity and T cell proliferation, which could be significantly prevented by systemic anti-CD1d mAb treatment. The age-related impairments in T cell immunity correlated with an increase in the production of the immunosuppressive cytokine IL-10 by splenocytes that was likewise prevented by anti-CD1d mAb treatment. Together, our results suggest that CD1d activation of NKT cells contributes to suppression of effector T cell immunity in aged mice.  相似文献   

14.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

15.
NK cells destroy microbe-infected cells while sparing healthy cells, and are controlled, in part, by inhibitory receptors specific for class I Ag-presenting molecules. CD1d1, a beta(2)-microglobulin-associated class I-like molecule, binds glycolipids and stimulates NKT cells. We previously demonstrated that target cell lysis by IL-2-activated mouse NK cells is inhibited by target cell expression of CD1d1, suggesting that IL-2-activated NK cells may express a CD1d1-specific inhibitory receptor. We now report that a significant subset of mouse IL-2-activated NK cells specifically binds cell size beads displaying either naturally expressed or recombinant CD1d1. In contrast, although tetramers of soluble recombinant CD1d1 loaded with alpha-galactosylceramide identify NKT cells, binding of this reagent to resting or IL-2-activated NK cells was undetectable, even with activated NK cells sorted with CD1d1 beads. Cytotoxicity by the CD1d1 bead-separated NK subset was strongly inhibited by CD1d1, compared with the NK cell subset not bound to CD1d1 beads. An Ab that blocks NKT cell recognition of CD1d1 also reverses CD1d1 inhibition of NK lysis, suggesting that TCRs of NKT cells and NK inhibitory receptor(s) may interact with a similar site on CD1d1. These results provide direct evidence for a physical interaction of NK cells with CD1d1, mediated by a functional, CD1d1-specific low-affinity inhibitory NK receptor. Display of ligands on cell size beads to maximize multivalent interaction may offer an alternative approach to examine NK cell receptor-ligand interactions, particularly those of lower expression and/or lower affinity/avidity that may go undetected using tetrameric reagents.  相似文献   

16.
IL-12 is a potent cytokine that impairs the growth of several tumors in vivo in natural as well as in therapeutic conditions. Although IL-12 can enhance a number of immunological antitumor mechanisms, including those mediated by NK cells and CTL, recent reports have suggested that the mouse CD1d-restricted V alpha 14-J alpha 18 NKT cell was the essential cell type recruited in most, if not all tumor rejection models, including the B16 melanoma. In this study, we have examined and compared the role of NKT cells, T cells, NK cells, and other non-T non-B cells in the rejection of B16 melanoma cells after exogenous administration of IL-12. Surprisingly, our results failed to confirm a necessary role for NKT cells in this model. Instead, we found that NK cells mediated the rejection of liver metastases, whereas other gamma c-dependent non-T non-B cells, possibly lymphoid dendritic cells, were required for rejection of skin tumors. These findings challenge the view that NKT cells are systematically required for IL-12-mediated rejection of tumors, and instead reveal that a variety of effector pathways can be recruited depending on the tumor microenvironment.  相似文献   

17.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

18.
Despite recent gains in knowledge regarding CD1d-restricted NKT cells, very little is understood of non-CD1d-restricted NKT cells such as CD8(+)NK1.1(+) T cells, in part because of the very small proportion of these cells in the periphery. In this study we took advantage of the high number of CD8(+)NK1.1(+) T cells in IL-15-transgenic mice to characterize this T cell population. In the IL-15-transgenic mice, the absolute number of CD1d-tetramer(+) NKT cells did not increase, although IL-15 has been shown to play a critical role in the development and expansion of these cells. The CD8(+)NK1.1(+) T cells in the IL-15-transgenic mice did not react with CD1d-tetramer. Approximately 50% of CD8(+)NK1.1(+) T cells were CD8alphaalpha. In contrast to CD4(+)NK1.1(+) T cells, which were mostly CD1d-restricted NKT cells and of which approximately 70% were CD69(+)CD44(+), approximately 70% of CD8(+)NK1.1(+) T cells were CD69(-)CD44(+). We could also expand similar CD8alphaalphaNK1.1(+) T cells but not CD4(+) NKT cells from CD8alpha(+)beta(-) bone marrow cells cultured ex vivo with IL-15. These results indicate that the increased CD8alphaalphaNK1.1(+) T cells are not activated conventional CD8(+) T cells and do not arise from conventional CD8alphabeta precursors. CD8alphaalphaNK1.1(+) T cells produced very large amounts of IFN-gamma and degranulated upon TCR activation. These results suggest that high levels of IL-15 induce expansion or differentiation of a novel NK1.1(+) T cell subset, CD8alphaalphaNK1.1(+) T cells, and that IL-15-transgenic mice may be a useful resource for studying the functional relevance of CD8(+)NK1.1(+) T cells.  相似文献   

19.
Activation of NK cells by target cells leads to cytotoxicity as well as production of various cytokines including IFN-gamma. MHC class I molecules on target cells regulate NK cytotoxicity. However, little is known about the regulation of IFN-gamma production by NK cells. We examined the production of IFN-gamma in individual murine NK cells stimulated with tumor cell lines by flow cytometric analysis of intracellular IFN-gamma. Among several tumor lines tested, the rat basophilic leukemia line RBL-1 induced particularly high level of IFN-gamma production in IL-2-activated NK cells, whereas other lines, including the prototypic NK target YAC-1, induced very low or no IFN-gamma production. Transfection of murine classical MHC class I molecules into RBL-1 cells substantially inhibited IFN-gamma production. This inhibition of IFN-gamma production by MHC class I was independent of Ly-49 or CD94/NKG2A expression on NK cells. These results indicate that some target cells directly stimulate IL-2-activated NK cells and induce IFN-gamma production, but the requirements for the induction of IFN-gamma production seem different from those for NK cytotoxicity. Furthermore, similar to NK cytotoxicity, induction of IFN-gamma production is inhibited by MHC class I on stimulating cells. However, the MHC class I-specific receptors inhibiting IFN-gamma production are different from those for NK cytotoxicity.  相似文献   

20.
TCRalphabeta(+)NK1.1(+) (NKT) cells are known to express various NK cell-associated molecules including the Ly49 family of receptors for MHC class I, but its functional significance has been unclear. Here, we examined the expression of Ly49A, C/I and G2 on various NKT cell populations from normal and MHC class I-deficient C57BL/6 mice as well as their responsiveness to alpha-galactosylceramide (alpha-GalCer), a potent stimulator of CD1d-restricted NKT cells. The frequency and the level of Ly49 expression varied among NKT cells from different tissues, and were regulated by the expression of MHC class I and CD1d in the host. Stimulation of various NKT cells with alpha-GalCer suggested that Ly49 expression inversely correlates with the responsiveness of NKT cells to alpha-GalCer. Moreover, alpha-GalCer presented by normal dendritic cells stimulated purified Ly49(-), but not Ly49(+), splenic NKT cells, whereas MHC class I-deficient dendritic cells presented alpha-GalCer to both Ly49(+) and Ly49(-) NKT cells equally well. Therefore, MHC class I on APCs seems to inhibit activation of NKT cells expressing Ly49. To further characterize CD1d-restricted NKT cells, we generated an alpha-GalCer-responsive NKT cell line from thymocytes. The line could only be generated from Ly49(-)NK1.1(+)CD4(+) thymocytes but not from other NKT cell subsets, and it lost expression of NK1.1 and CD4 during culture. Together, these results indicate the functional significance of Ly49 expression on NKT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号