首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In vitro assays identified the Golgi peripheral protein GRASP65 as a Golgi stacking factor that links adjacent Golgi cisternae by forming mitotically regulated trans‐oligomers. These conclusions, however, require further confirmation in the cell. In this study, we showed that the first 112 amino acids at the N‐terminus (including the first PDZ domain, PDZ1) of the protein are sufficient for oligomerization. Systematic electron microscopic analysis showed that the expression of non‐regulatable GRASP65 mutants in HeLa cells enhanced Golgi stacking in interphase and inhibited Golgi fragmentation during mitosis. Depletion of GRASP65 by small interference RNA (siRNA) reduced the number of cisternae in the Golgi stacks; this reduction was rescued by expressing exogenous GRASP65. These results provided evidence and a molecular mechanism by which GRASP65 stacks Golgi cisternal membranes. Further experiments revealed that inhibition of mitotic Golgi disassembly by expressing non‐regulatable GRASP65 mutants did not affect equal partitioning of the Golgi membranes into the daughter cells. However, it delayed mitotic entry and suppressed cell growth; this effect was diminished by dispersing the Golgi apparatus with Brefeldin A treatment prior to mitosis, suggesting that Golgi disassembly at the onset of mitosis plays a role in cell cycle progression.  相似文献   

2.
In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.  相似文献   

3.
During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled by the ATPases, p97 and NSF. Golgi reassembly stacking protein 65 (GRASP65), an NEM-sensitive membrane-bound component, is required for the stacking process. NSF-mediated cisternal regrowth requires a vesicle tethering protein, p115, which we now show operates through its two Golgi receptors, GM130 and giantin. p97-mediated cisternal regrowth is p115-independent, but we now demonstrate a role for p115, in conjunction with its receptors, in stacking p97 generated cisternae. Temporal analysis suggests that p115 plays a transient role in stacking that may be upstream of GRASP65-mediated stacking. These results implicate p115 and its receptors in the initial alignment and docking of single cisternae that may be an important prerequisite for stack formation.  相似文献   

4.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

5.
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.  相似文献   

6.
The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking.  相似文献   

7.
Wang Y  Wei JH  Bisel B  Tang D  Seemann J 《PloS one》2008,3(2):e1647
The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning.  相似文献   

8.
GRASP65 (Golgi reassembly and stacking protein of 65 KDa) is a cis-Golgi protein with roles in Golgi structure, membrane trafficking and cell signalling. It is cleaved by caspase-3 early in apoptosis, promoting Golgi fragmentation. We now show that cleavage is needed for Fas-mediated apoptosis: expression of caspase-resistant GRASP65 protects cells, whereas expression of membrane proximal caspase-cleaved GRASP65 fragments dramatically sensitises cells. GRASP65 coordinates passage through the Golgi apparatus of proteins containing C-terminal hydrophobic motifs, via its tandem PDZ type ‘GRASP'' domains. Fas/CD95 contains a C-terminal leucine–valine pairing so its trafficking might be coordinated by GRASP65. Mutagenesis of the Fas/CD95 LV motif reduces the number of cells with Golgi-associated Fas/CD95, and generates a receptor that is more effective at inducing apoptosis; however, siRNA-mediated silencing or expression of mutant GRASP65 constructs do not alter the steady state distribution of Fas/CD95. We also find no evidence for a GRASP65–Fas/CD95 interaction at the molecular level. Instead, we find that the C-terminal fragments of GRASP65 produced following caspase cleavage are targeted to mitochondria, and ectopic expression of these sensitises HeLa cells to Fas ligand. Our data suggest that GRASP65 cleavage promotes Fas/CD95-mediated apoptosis via release of C-terminal fragments that act at the mitochondria, and we identify Bcl-XL as a candidate apoptotic binding partner for GRASP65.  相似文献   

9.
The mammalian GRASPs (Golgi reassembly stacking proteins) GRASP65 and GRASP55 were first discovered more than a decade ago as factors involved in the stacking of Golgi cisternae. Since then, orthologues have been identified in many different organisms and GRASPs have been assigned new roles that may seem disconnected. In vitro, GRASPs have been shown to have the biochemical properties of Golgi stacking factors, but the jury is still out as to whether they act as such in vivo. In mammalian cells, GRASP65 and GRASP55 are required for formation of the Golgi ribbon, a structure which is fragmented in mitosis owing to the phosphorylation of a number of serine and threonine residues situated in its C-terminus. Golgi ribbon unlinking is in turn shown to be part of a mitotic checkpoint. GRASP65 also seems to be the key target of signalling events leading to re-orientation of the Golgi during cell migration and its breakdown during apoptosis. Interestingly, the Golgi ribbon is not a feature of lower eukaryotes, yet a GRASP homologue is present in the genome of Encephalitozoon cuniculi, suggesting they have other roles. GRASPs have no identified function in bulk anterograde protein transport along the secretory pathway, but some cargo-specific trafficking roles for GRASPs have been discovered. Furthermore, GRASP orthologues have recently been shown to mediate the unconventional secretion of the cytoplasmic proteins AcbA/Acb1, in both Dictyostelium discoideum and yeast, and the Golgi bypass of a number of transmembrane proteins during Drosophila development. In the present paper, we review the multiple roles of GRASPs.  相似文献   

10.
A direct role for GRASP65 as a mitotically regulated Golgi stacking factor   总被引:1,自引:0,他引:1  
Cell-free assays that mimic the disassembly and reassembly cycle of the Golgi apparatus during mitosis implicated GRASP65 as a mitotically regulated stacking factor. We now present evidence that GRASP65 is directly involved in stacking Golgi cisternae. GRASP65 is the major phosphorylation target in rat liver Golgi membranes of two mitotic kinases, cdc2-cyclin B and polo-like kinases, which alone will unstack Golgi membranes, generating single cisternae. Mitotic cells microinjected with antibodies to GRASP65 fail to form proper Golgi stacks after cell division. Beads coated with GRASP65 homodimers form extensive aggregates consistent with the formation of trans oligomers. These can be disaggregated using purified cdc2-cyclin B1 and polo-like kinases, and re-aggregated after dephosphorylation of GRASP65. Together, these data demonstrate that GRASP65 has the properties required to bind surfaces together in a mitotically regulated manner.  相似文献   

11.
Together with other Golgi matrix components, GRASP65 contributes to the stacking of Golgi cisternae in interphase cells. During mitosis, GRASP65 is heavily phosphorylated, and in turn, cisternal stacking is inhibited leading to the breakdown of the Golgi apparatus. Here we show that GRASP65 is phosphorylated on serine 277 in interphase cells, and this is strongly enhanced in response to the addition of serum or epidermal growth factor. This is directly mediated by ERK suggesting that GRASP65 has some role in growth factor signal transduction. Phosphorylation of Ser-277 is also dramatically increased during mitosis, however this is mediated by Cdk1 and not by ERK. The microinjection of recombinant GRASP65 without N-terminal myristoylation or a peptide fragment containing Ser-277 into the cytosol of normal rat kidney cells inhibits passage through mitosis. This effect is abolished when Ser-277 is replaced with alanine suggesting the phosphorylation of Ser-277 plays an important role in cell cycle regulation. The convergence of cell cycle regulation and growth factor signals on GRASP65 Ser-277 suggests that GRASP65 may function as a signal integrator controlling the cell growth.  相似文献   

12.
GM130 and GRASP65 are Golgi peripheral membrane proteins that play a key role in Golgi stacking and vesicle tethering. However, the molecular details of their interaction and their structural role as a functional unit remain unclear. Here, we present the crystal structure of the PDZ domains of GRASP65 in complex with the GM130 C-terminal peptide at 1.96-Å resolution. In contrast to previous findings proposing that GM130 interacts with GRASP65 at the PDZ2 domain only, our crystal structure of the complex indicates that GM130 binds to GRASP65 at two distinct sites concurrently and that both the PDZ1 and PDZ2 domains of GRASP65 participate in this molecular interaction. Mutagenesis experiments support these structural observations and demonstrate that they are required for GRASP65-GM130 association.  相似文献   

13.
Homotypic membrane tethering by the Golgi reassembly and stacking proteins (GRASPs) is required for the lateral linkage of mammalian Golgi ministacks into a ribbon-like membrane network. Although GRASP65 and GRASP55 are specifically localized to cis and medial/trans cisternae, respectively, it is unknown whether each GRASP mediates cisternae-specific tethering and whether such specificity is necessary for Golgi compartmentalization. Here each GRASP was tagged with KillerRed (KR), expressed in HeLa cells, and inhibited by 1-min exposure to light. Significantly, inactivation of either GRASP unlinked the Golgi ribbon, and the immediate effect of GRASP65-KR inactivation was a loss of cis- rather than trans-Golgi integrity, whereas inactivation of GRASP55-KR first affected the trans- and not the cis-Golgi. Thus each GRASP appears to play a direct and cisternae-specific role in linking ministacks into a continuous membrane network. To test the consequence of loss of cisternae-specific tethering, we generated Golgi membranes with a single GRASP on all cisternae. Remarkably, the membranes exhibited the full connectivity of wild-type Golgi ribbons but were decompartmentalized and defective in glycan processing. Thus the GRASP isoforms specifically link analogous cisternae to ensure Golgi compartmentalization and proper processing.  相似文献   

14.
Mitotic phosphorylation of the conserved GRASP domain of GRASP65 disrupts its self-association, leading to a loss of Golgi membrane tethering, cisternal unlinking, and Golgi breakdown. Recently, the structural basis of the GRASP self-interaction was determined, yet the mechanism by which phosphorylation disrupts this activity is unknown. Here, we present the crystal structure of a GRASP phosphomimic containing an aspartic acid substitution for a serine residue (Ser-189) that in GRASP65 is phosphorylated by PLK1, causing a block in membrane tethering and Golgi ribbon formation. The structure revealed a conformational change in the GRASP internal ligand that prevented its insertion into the PDZ binding pocket, and gel filtration assays showed that this phosphomimic mutant exhibited a significant reduction in dimer formation. Interestingly, the structure also revealed an apparent propagation of conformational change from the site of phosphorylation to the shifted ligand, and alanine substitution of two residues (Glu-145 and Ser-146) at penultimate positions in this chain rescued dimer formation by the phosphomimic. These data reveal the structural basis of the phosphoinhibition of GRASP-mediated membrane tethering and provide a mechanism for its allosteric regulation.  相似文献   

15.
The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis   总被引:1,自引:0,他引:1  
GRASP55 is a Golgi-associated protein, but its function at the Golgi remains unclear. Addition of full-length GRASP55, GRASP55-specific peptides, or an anti-GRASP55 antibody inhibited Golgi fragmentation by mitotic extracts in vitro, and entry of cells into mitosis. Phospho-peptide mapping of full-length GRASP55 revealed that threonine 225 and 249 were mitotically phosphorylated. Wild-type peptides containing T225 and T249 inhibited Golgi fragmentation and entry of cells into mitosis. Mutant peptides containing T225E and T249E, in contrast, did not affect Golgi fragmentation and entry into mitosis. These findings reveal a role of GRASP55 in events leading to Golgi fragmentation and the subsequent entry of cell into mitosis. Surprisingly, however, under our experimental conditions, >85% knockdown of GRASP55 did not affect the overall organization of Golgi organization in terms of cisternal stacking and lateral connections between stacks. Based on our findings we suggest that phosphorylation of GRASP55 at T225/T249 releases a bound component, which is phosphorylated and necessary for Golgi fragmentation. Thus, GRASP55 has no role in the organization of Golgi membranes per se, but it controls their fragmentation by regulating the release of a partner, which requires a G2-specific phosphorylation at T225/T249.  相似文献   

16.
Golgin-84 is a rab1 binding partner involved in Golgi structure   总被引:7,自引:0,他引:7  
Members of the golgin family of coiled-coil proteins have been implicated in the tethering of vesicles to Golgi membranes and cisternal membranes to each other. Many also bind to rab GTPases. Golgin-84 is a membrane-anchored golgin that we now show binds preferentially to the GTP form of the rab1 GTPase. It is also present throughout the Golgi stack by immuno-EM. Antibodies to golgin-84 inhibit stacking of cisternal membranes in a cell-free assay for Golgi reassembly, whereas the cytoplasmic domain of golgin-84 stimulates stacking and increases the length of re-assembled stacks. Transient expression of golgin-84 in NRK cells helps prevent the disassembly of the Golgi apparatus normally triggered by treatment with brefeldin A. Together these data suggest that golgin-84 is involved in generating and maintaining the architecture of the Golgi apparatus.  相似文献   

17.
We have identified a 55 kDa protein, named GRASP55 (Golgi reassembly stacking protein of 55 kDa), as a component of the Golgi stacking machinery. GRASP55 is homologous to GRASP65, an N-ethylmaleimide-sensitive membrane protein required for the stacking of Golgi cisternae in a cell-free system. GRASP65 exists in a complex with the vesicle docking protein receptor GM130 to which it binds directly, and the membrane tethering protein p115, which also functions in the stacking of Golgi cisternae. GRASP55 binding to GM130, could not be detected using biochemical methods, although a weak interaction was detected with the yeast two-hybrid system. Cryo-electron microscopy revealed that GRASP65, like GM130, is present on the cis-Golgi, while GRASP55 is on the medial-Golgi. Recombinant GRASP55 and antibodies to the protein block the stacking of Golgi cisternae, which is similar to the observations made for GRASP65. These results demonstrate that GRASP55 and GRASP65 function in the stacking of Golgi cisternae.  相似文献   

18.
The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.  相似文献   

19.
GRASP55 regulates Golgi ribbon formation   总被引:3,自引:1,他引:2  
Recent work indicates that mitogen-activated protein kinase kinase (MEK)1 signaling at the G2/M cell cycle transition unlinks the contiguous mammalian Golgi apparatus and that this regulates cell cycle progression. Here, we sought to determine the role in this pathway of Golgi reassembly protein (GRASP)55, a Golgi-localized target of MEK/extracellular signal-regulated kinase (ERK) phosphorylation at mitosis. In support of the hypothesis that GRASP55 is inhibited in late G2 phase, causing unlinking of the Golgi ribbon, we found that HeLa cells depleted of GRASP55 show a fragmented Golgi similar to control cells arrested in G2 phase. In the absence of GRASP55, Golgi stack length is shortened but Golgi stacking, compartmentalization, and transport seem normal. Absence of GRASP55 was also sufficient to suppress the requirement for MEK1 in the G2/M transition, a requirement that we previously found depends on an intact Golgi ribbon. Furthermore, mimicking mitotic phosphorylation of GRASP55 by using aspartic acid substitutions is sufficient to unlink the Golgi apparatus in a gene replacement assay. Our results implicate MEK1/ERK regulation of GRASP55-mediated Golgi linking as a control point in cell cycle progression.  相似文献   

20.
Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.

IntroductionThe Golgi apparatus is an intermediate organelle along the secretory pathway that receives proteins and lipids (“cargo”) from the endoplasmic reticulum, covalently modifies them, and then exports them via transport vesicles for trafficking to the plasma membrane or other organelles. In most eukaryotic cells, disc-shaped membrane cisternae, each containing a distinct repertoire of cargo-processing enzymes, are stacked one on top of another to form the “Golgi stack,” a visual hallmark of the organelle (Fig. 1). The cisternae of the Golgi stack are polarized, with the compartment receiving endoplasmic reticulum–derived cargo termed the cis cisterna followed by the medial; trans; and finally, the trans-Golgi network. The physiological advantages conferred by stacking of Golgi cisternae are unclear, but it is thought to enhance the efficiencies of the sequential chemical modifications of glycoproteins and glycolipids during secretion. Cultured mammalian cells may possess more than 100 Golgi stacks, which are aligned side by side about the centrosome to form the “Golgi ribbon” (Fig. 1). Vesicles and tubules span the intervening, “noncompact” zones between stacks of cisternae, connecting analogous cisternae across the ribbon and thereby ensuring a homogeneous distribution of Golgi resident proteins among all cisternae. During mitosis, the Golgi ribbon is unlinked, the stacks are disassembled, and the cisternae are converted to vesicles and tubules; after cytokinesis, the process is reversed, and the Golgi is rebuilt. The dynamic nature of Golgi structure in interphase and mitotic cells implies the existence of a reversible mechanism that tethers Golgi cisternae to each other to form the stack and a mechanism that aligns and links the stacks into the ribbon.Open in a separate windowFigure 1.The organization of the Golgi apparatus in vertebrate cells. Individual stacks of Golgi cisternae are aligned side to side to form the Golgi ribbon. The GRASP65 and GRASP55 proteins are depicted to be enriched on the rims of the indicated cisternae within individual stacks of cisternae, where they are required to maintain the arrangement of stacks into the ribbon.GRASP proteins tether Golgi cisternae in vitroInvestigations into the molecular basis of Golgi cisterna stacking have ultimately focused attention on a handful of cytoplasmic proteins called “Golgins” and “GRASPs” that are associated with specific Golgi cisternae and interact with each other. Of particular interest are two related proteins GRASP65 and GRASP55 (respective systematic names GORASP1 and GORASP2), discovered by Warren and colleagues via in vitro reconstitution experiments, as capable of mediating stacking of Golgi cisternae (Barr et al., 1997; Shorter et al., 1999). Whereas GRASP65 localizes to the cis cisterna, GRASP55 localization favors medial/trans Golgi cisternae (Shorter et al., 1999); hence, these proteins could, in principle, tether cisternae to form a minimal Golgi stack. In these in vitro assays, perturbations (mutations, antibody interference) to either GRASP65 or GRASP55 inhibited stacking of reformed Golgi cisternae. Moreover, GRASP proteins are phosphorylated in mitosis just before vesiculation of Golgi cisternae, and preventing phosphorylation impairs the disassembly of the Golgi apparatus and mitotic progression (Wang et al., 2003). These findings underpin models of the Golgi stack where GRASP65 and GRASP55, along with Golgin proteins, constitute the core components of a cytoplasmic “matrix” of proteins that surround the cisternae, mediating their stacking as well as the tethering of transport vesicles to cisternae. Curiously, plant cells contain stacked Golgi cisternae, yet they do not express any GRASP or GRASP-related proteins. And some nonvertebrate organisms with stacked Golgi cisternae express just one GRASP-related protein, while the Golgi cisternae are not stacked in other nonvertebrate organisms (e.g., yeast) that express a single GRASP (Glick and Malhotra, 1998). Apparently, the presence or number of GRASP proteins expressed does not correlate with stacked cisternae.Whereas the results of in vitro biochemical assays underpin our conceptions of GRASP protein function, probing their roles in vivo has proven to be quite challenging. First, depletion/deletion of each individual GRASP protein is largely without effect on Golgi stack or ribbon formation, but a very complex phenotype results from depletion/deletion of both GRASP proteins. Thus, some reports conclude that the GRASP proteins function redundantly to stack cisternae (Bekier et al., 2017), while others conclude that the Golgi ribbon, not the stack per se, is perturbed upon loss of GRASP proteins (Puthenveedu et al., 2006; Feinstein and Linstedt, 2008; Xiang and Wang, 2010; Lee et al., 2014; Veenendaal et al., 2014). Recently, two papers published in the Journal of Cell Biology employed different methodologies to perturb GRASP protein functions in vivo (Grond et al., 2020; Zhang and Seemann, 2021), providing the most conclusive insight to date into the roles of GRASP proteins in Golgi structure.The Golgi ribbon is unlinked upon loss of GRASP proteinsRabouille and colleagues used traditional mouse gene knockout technology to delete GRASP65, finding that such mice are viable with no apparent physiological deficits or gross morphological perturbations of the Golgi (Veenendaal et al., 2014). In their recent study (Grond et al., 2020), GRASP55 was deleted in the GRASP65 null background, but double-knockout mice could not be obtained, consistent with GRASP proteins being at least partially physiologically redundant. Next, using a conditional knockout approach, double GRASP null cells were produced postnatally in the small intestine, and the Golgi of intestinal epithelial cells was examined. In these cells, stacked Golgi cisternae were observed, but their arrangement into a ribbon was compromised, a result corroborated by more detailed analysis of cells in organoid cultures. These findings are at odds with the conclusions of Wang and colleagues (Bekier et al., 2017), who used CRISPR-Cas9 gene editing technology to construct cultured mammalian cell lines that do not express GRASP65 and GRASP55. They found that the appearance of Golgi cisternae was grossly altered, resembling clusters of tubules and vesicles (“tubulovesicular clusters”) about swollen cisterna remnants that debatably appeared to be stacked. One possible reason for the disparities between these two studies is that Bekier et al. (2017) documented that loss of GRASP proteins in cultured mammalian cells also resulted in depletion of a subset of Golgin proteins (e.g., GM130, Golgin-45) from Golgi cisternae, so it was not possible to parse the specific contributions of GRASP proteins to Golgi structure.Analyses of siRNA-depleted and gene-edited cell lines and modified animals are often complicated by incomplete depletion of a query protein, unintended loss of other proteins, or compensatory processes that obscure loss-of-function effects. Notably, siRNA depletion of GM130, which is associated with GRASP65 on the cis cisterna, impairs secretory traffic from the endoplasmic reticulum to the Golgi apparatus, resulting in a reduction in the size of Golgi cisternae and diminished interstack connectivity possibly due to vesiculation of cisternae (Seemann et al., 2000; Puthenveedu et al., 2006). To minimize these drawbacks, Zhang and Seemann (2021) used gene editing to modify the GRASP65 and GRASP55 loci to append an inducible protein degradation domain to each protein in cultured mammalian cells, which was used to elicit degradation of the GRASP proteins within just 2 h. Hence, the acute effects of GRASP protein depletion could be determined before the onset of potentially confounding effects. Fluorescence recovery after photobleaching assays of a fluorescently tagged Golgi resident protein revealed that acute depletion of both GRASP65 and GRASP55 resulted in decreased mobility of the resident Golgi enzyme within the ribbon, indicating that connectivity of cisternae between stacks was compromised. Stacks of Golgi cisternae with proper cis–trans polarity were observed by electron and light microscopy, both shortly (∼2 h) after GRASP protein turnover was initiated, and after mitosis, indicating that GRASP proteins are not required to establish or to maintain the Golgi stacks. Importantly, the authors observed no changes in the levels of GRASP-associated proteins (e.g., GM130) when assayed shortly after initiating GRASP protein turnover, but the amounts of several GRASP-associated proteins were reduced after prolonged growth in the absence of GRASP proteins. The results are in general agreement with experiments by Jarvela and Linstedt (2014), who expressed GRASP65 and GRASP55 fusion proteins appended with “killer RFP” and used chomophore-assisted light inactivation to rapidly (1 min) ablate the proteins in cultured mammalian cells. Similar to Zhang and Seemann (2021), they observed that the Golgi ribbon was disassembled upon inactivation of GRASP proteins, but stacking of cisternae was unaffected. Taken together, these results conclusively show that acute depletion of GRASP65 and GRASP55 impairs lateral linking of stacked Golgi cisternae within the ribbon while not affecting stacking of cisternae.Conclusions and perspectivesA body of work now more than 20 years old has shown that GRASP65 and GRAPS55 are core structural components of a matrix of cytoplasmic proteins associated with Golgi cisternae; however, the Grond et al. (2020) and Zhang and Seemann (2021) reports now firmly establish that GRASP proteins are dispensable for stacking of Golgi cisterna and indicate that they are required for linking Golgi stacks within the ribbon. These new studies suggest that the integrity of the Golgi matrix critically depends on the presence of GRASP proteins, and their absence perturbs the balance of cargo flow through the Golgi, reducing the interstack exchange required to maintain connectivity of stacks within the ribbon. How might GRASP proteins facilitate linking of stacks within the Golgi ribbon? When the ribbon is disrupted (using the microtubule depolymerizing reagent nocodazole) and individual Golgi stacks are examined, GRASP65 and GRASP55 appear to be enriched at the rims of Golgi cisternae (Fig. 1; Tie et al., 2018). Hence, the GRASP proteins are positioned at the vesicle-rich interface between adjacent cisternal stacks. Grond et al. (2020) observed reductions in the size of Golgi cisternae in cells deleted of both GRASP proteins and speculated that this may be due to increased coatomer I vesicle formation at the rims of cisternae. In this view, GRASP proteins dampen vesicle flux at the rims of Golgi cisternae, a model supported by the observation that depletion of GRASP proteins leads to an increase in secretion rate (Wang et al., 2008). These new studies firmly shift our view of GRASP protein function away from the stacking of Golgi cisternae, and we look forward to new mechanistic insights into the roles of GRASP proteins in Golgi ribbon formation as well as in non–Golgi-dependent processes, such as unconventional protein secretion (Kinseth et al., 2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号