首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Windsor JB  Thomas C  Hurley L  Roux SJ  Lloyd AM 《BioTechniques》2002,33(5):1024, 1026, 1028-1024, 1026, 1030
Apyrases are enzymes that efficiently hydrolyze ATP and ADP and may operate both inside and outside the cell. Although apyrases are important to a variety of cellular mechanisms and uses in industry, there are no available apyrase-specific inhibitors. Colorimetric assays based on the Fiske-Subbarow method for measuring inorganic phosphate are able to detect the release of inorganic phosphate from ATP and other nucleotides. We found that this type of assay could be automated and used to screen for apyrase-inhibiting compounds by assaying for a reduction in released phosphate in the presence of potential inhibitors. The automation of this assay allowed for the successful screening of a commercially available compound library. Several low molecular weight compounds were identified that, when used at micromolar concentrations, effectively inhibited apyrase activity.  相似文献   

2.
3.
Enantiomerically pure β-arylalkyl carboxylic acids are important synthetic intermediates for the preparation of a wide range of compounds with biological and pharmacological activities. A library of 83 enzymes isolated from the metagenome was searched for activity in the hydrolysis of ethyl esters of three racemic phenylalkyl carboxylic acids by a microtiter plate-based screening using a pH-indicator assay. Out of these, 20 enzymes were found to be active and were subjected to analytical scale biocatalysis in order to determine their enantioselectivity. The most enantioselective and also enantiocomplementary biocatalysts were then used for preparative scale reactions. Thus, both enantiomers of each of the three phenylalkyl carboxylic acids studied could be obtained in excellent optical purity and high yields.  相似文献   

4.
Mass spectrometry (MS) analysis is applicable to a broad range of biological analytes and has the important advantage that it does not require analytes to be labeled. A drawback of MS methods, however, is the need for chromatographic steps to prepare the analyte, precluding MS from being used in chemical screening and rapid analysis. Here, we report that surfaces that are chemically tailored for characterization by matrix-assisted laser-desorption ionization time-of-flight MS eliminate the need for sample processing and make this technique adaptable to parallel screening experiments. The tailored substrates are based on self-assembled monolayers that present ligands that interact with target proteins and enzymes. We apply this method to screen a chemical library against protease activity of anthrax lethal factor, and report a compound that inhibits lethal factor activity with a K(i) of 1.1 microM and blocks the cleavage of MEK1 in 293 cells.  相似文献   

5.
Combinatorial strategies offer the potential to generate and screen extremely large numbers of compounds and to identify individual molecules with a desired binding specificity or pharmacological activity. We describe a combinatorial strategy for oligonucleotides in which the library is generated and screened without using enzymes. Freedom from enzymes enables the use of oligonucleotide analogues. This dramatically extends the scope of both the compounds and the targets that may be screened. We demonstrate the utility of the method by screening 2'-O-Methyl and phosphorothioate oligonucleotide analogue libraries. Compounds have been identified that bind to the activated H-ras mRNA and that have potent antiviral activity against the human herpes simplex virus.  相似文献   

6.
7.
T-RFLP clone characterization (screening) was optimized for a fast and basepair-accurate characterization of clones from marine Archaea collected from the Eastern Mediterranean Sea. Because of the high sensitivity of T-RFLP fingerprinting, a protocol was developed where 10 initial PCR cycles gave detectable terminal fragments from clones. Additionally, forward and reverse primers for PCR were individually labeled and detected simultaneously to assess the suitability of the forward and reverse fragments for T-RFLP screening. Based on independent restriction digests with the tetrameric restriction enzymes HhaI, RsaI and HaeIII to characterize the 49 archaeal clones in our library, the clones were grouped into 13 T-RFLP operational taxonomic units (OTUs). Reverse fragments generally gave less heterogeneous fragments in size. The accuracy of T-RFLP screening was evaluated by sequencing representative clones. Closely related clones ( approximately 97% similarity) could only be resolved with multiple restriction digests where forward and reverse fragments were included in the analysis. All fragments from the clone library were detected in the T-RFLP fingerprint from the complex archaeal community. We found representatives of marine group I, II and III Archaea. Thus, the recently discovered low abundant marine group III Archaea could be clearly differentiated from the other clones in our library and comprised a considerable fraction of the clone library ( approximately 12%). Therefore, our T-RFLP screening approach proved successful in characterizing novel archaeal sequences from the marine environment.  相似文献   

8.
羊毛硫肽(lanthipeptide)是由核糖体合成并经翻译后修饰产生的肽类天然产物,具有丰富的分子结构和多样的生物活性.新型羊毛硫肽是活性药物的重要来源,可以通过基因组挖掘和工程改造获得.羊毛硫肽前体肽由基因编码,同时其合成酶具有较高的底物杂泛性.基于这些特征,可以对羊毛硫肽的生物合成过程开展高通量工程改造,从而快速...  相似文献   

9.
Histone deacetylase (HDAC) enzymes modify the acetylation state of histones and other important proteins. Aberrant HDAC enzyme function has been implicated in many diseases, and the discovery and development of drugs targeting these enzymes is becoming increasingly important. In this article, the authors report the evaluation of homogeneous, single-addition, bioluminogenic HDAC enzyme activity assays that offer less assay interference by compounds in comparison to fluorescence-based formats. The authors assessed the key operational assay properties including sensitivity, scalability, reproducibility, signal stability, robustness (Z'), DMSO tolerance, and pharmacological response to standard inhibitors against HDAC-1, HDAC-3/NcoR2, HDAC-6, and SIRT-1 enzymes. These assays were successfully miniaturized to a 10 μL assay volume, and their suitability for high-throughput screening was tested in validation experiments using 640 drugs approved by the Food and Drug Administration and the Hypha Discovery MycoDiverse natural products library, which is a collection of 10 049 extracts and fractions from fermentations of higher fungi and contains compounds that are of low molecular weight and wide chemical diversity. Both of these screening campaigns confirmed that the bioluminogenic assay was high-throughput screening compatible and yielded acceptable performance in confirmation, counter, and compound/extract and fraction concentration-response assays.  相似文献   

10.
Tyrosinase (TYR) inhibitors are in great demand in the food, cosmetic and medical industrials due to their important roles. Therefore, the discovery of high-quality TYR inhibitors is always pursued. Natural products as one of the most important sources of bioactive compounds discovery have been increasingly used for TYR inhibitors screening. However, due to their complex compositions, it is still a great challenge to rapid screening and identification of biologically active components from them. In recent years, with the help of separation technologies and the affinity and intrinsic activity of target enzymes, two advanced approaches including affinity screening and inhibition profiling showed great promises for a successful screening of bioactive compounds from natural sources. This review summarises the recent progress of separation-based methods for TYR inhibitors screening, with an emphasis on the principle, application, advantage, and drawback of each method along with perspectives in the future development of these screening techniques and screened hit compounds.  相似文献   

11.
Activity screening and insertional inactivation of lipopolysaccharide (LPS) biosynthetic genes in Helicobacter pylori have led to the successful characterization of two key enzymes encoded by HP0159 (JHP0147) and HP1105 (JHP1032) open reading frames (ORFs) which are members of the large and diverse carbohydrate active enzymes (CAZY) GT-8 (rfaJ) family of glycosyltransferases. Activity screening of a genomic library led to the identification of the enzyme involved in the biosynthesis of the type 2 N-acetyl-lactosamine O-chain backbone, the beta-1,3-N-acetyl-glucosaminyl transferase. In addition, the activity screening approach led to the identification and characterization of a key core biosynthetic enzyme responsible for the biosynthesis of the alpha-1,6-glucan polymer. This alpha-1,6-glucosyltransferase protein is encoded by the HP0159 ORF. Both enzymes play an integral part in the biosynthesis of LPS, and insertional inactivation leads to the production of a truncated LPS molecule on the bacterial cell surface. The LPS structures were determined by mass spectrometry and chemical analyses. The linkage specificity of each glycosyltransferase was determined by nuclear magnetic resonance (NMR) analysis of model compounds synthesized in vitro. A cryogenic probe was used to structurally characterize nanomole amounts of the product of the HP1105 (JHP1032) enzyme. In contrast to the HP0159 enzyme, which displays the GT-8-predicted retaining stereochemistry for the reaction product, HP1105 (JHP1032) is the first member of this GT-8 family to have been shown to have an inverting stereochemistry in its reaction products.  相似文献   

12.
Directed evolution has become a successful approach to alter ligand binding properties of nuclear receptors. In this study, directed evolution was used to generate a mutant human estrogen receptor α library, which was then used to screen for receptors having enhanced responses to the known endocrine-disrupting chemical, bisphenol A (BPA). A single round of multi-site mutation was combined with an efficient positive/negative library screening method in which positive growth-based selection for the desired activity with BPA was combined with flow cytometric removal of cells having undesired activity with the natural ligand, 17β-estradiol. The screening steps were performed in a Saccharomyces cerevisiae yeast strain containing a genome-integrated his3-yEGFP reporter gene fusion construct. A single round of mutation and screening yielded nine mutants with enhanced responses towards BPA but no detectable induction by 17β-estradiol (up to 90 nM). These BPA-specific mutant receptors may prove useful in the field of environmental analytics, where they could be used to monitor and evaluate the proportion of BPA in hormonally active samples.  相似文献   

13.
A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from 50 degrees C to 55 degrees C. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.  相似文献   

14.
Hydroxynitrile lyases (Hnls) are important biocatalysts for the synthesis of optically pure cyanohydrins, which are used as precursors and building blocks for a wide range of high price fine chemicals. Although two Hnl enzymes, from the tropical rubber tree Hevea brasiliensis and from the almond tree Prunus amygdalus, are already used for large scale industrial applications, the enzymes still need to be improved and adapted to the special demands of industrial processes. In many cases directed evolution has been the method of choice to improve enzymes, which are applied as industrial biocatalysts. The screening procedure is the most crucial point in every directed evolution experiment. Herein, we describe the successful development of a novel screening assay for Hnls and its application in high-throughput screening of Escherichia coli mutant libraries. The new assay allows rapid screening of mutant libraries and facilitates the discovery of improved enzyme variants. Hnls catalyze the cleavage of cyanohydrins to hydrocyanic acid and the corresponding aldehyde or ketone. The enzyme assay is based on the detection of hydrocyanic acid produced, making it an all-purpose screening assay, without restriction to any kind of substrate. The gaseous HCN liberated within the Hnl reaction is detected by a visible colorimetric reaction. The facile, highly sensitive and reproducible screening method was validated by identifying new enzyme variants with novel substrate specificities.  相似文献   

15.
Strictosidine synthases catalyze the formation of strictosidine, a key intermediate in the biosynthesis of a large variety of monoterpenoid indole alkaloids. Efforts to utilize these biocatalysts for the preparation of strictosidine analogs have however been of limited success due to the high substrate specificity of these enzymes. We have explored the impact of a protein engineering approach called circular permutation on the activity of strictosidine synthase from the Indian medicinal plant Rauvolfia serpentina. To expedite the discovery process, our study departs from the usual process of creating a random protein library, followed by extensive screening. Instead, a small, focused library of circular permutated variants of the six bladed β-propeller protein was prepared, specifically probing two regions which cover the enzyme active site. The observed activity changes suggest important roles of both regions in protein folding, stability and catalysis.  相似文献   

16.
酶和细胞工厂是工业生物技术的核心,在医药、化工、食品、农业、能源等诸多领域发挥重要作用。一般天然酶和细胞均需通过分子改造提高其催化效率、稳定性及立体选择性等。定向改造为快速改善酶和细胞工厂的性能提供了可能性,其中灵敏可靠的高通量筛选方法是决定酶和细胞工厂成功高效定向改造的关键。文中阐述并分析讨论了各种筛选方法的优缺点、适用范围以及信号产生策略,并总结了近3年超高通量筛选技术在酶和细胞工厂定向改造中的最新研究进展。在此基础上,讨论了高通量筛选系统目前面临的限制性因素,并对高通量筛选方法未来的发展趋势作出了展望。希望生物技术和仪器开发等各领域的研究者能够紧密合作,实现协同发展,进一步提升高通量筛选技术的可靠性和适用性。  相似文献   

17.
18.
19.
The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.  相似文献   

20.
Screening for novel lipolytic enzymes from uncultured soil microorganisms   总被引:12,自引:0,他引:12  
The construction and screening of metagenomic libraries constitute a valuable resource for obtaining novel biocatalysts. In this work, we present the construction of a metagenomic library in Escherichia coli using fosmid and microbial DNA directly isolated from forest topsoil and screened for lipolytic enzymes. The library consisted of 33,700 clones with an average DNA insert size of 35 kb. Eight unique lipolytic active clones were obtained from the metagenomic library on the basis of tributyrin hydrolysis. Subsequently, secondary libraries in a high-copy-number plasmid were generated to select lipolytic subclones and to characterize the individual genes responsible for the lipolytic activity. DNA sequence analysis of six genes revealed that the enzymes encoded by the metagenomic genes for lipolytic activity were novel with 34–48% similarity to known enzymes. They had conserved sequences similar to those in the hormone-sensitive lipase family. Based on their deduced amino acid similarity, the six genes encoding lipolytic enzymes were further divided into three subgroups, the identities among which ranged from 33% to 45%. The six predicted gene products were successfully expressed in E. coli and secreted into the culture broth. Most of the secreted enzymes showed a catalytic activity for hydrolysis of p-nitrophenyl butyrate (C4) but not p-nitrophenyl palmitate (C16).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号