首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Euphrates poplar (Populus euphratica) is a key species of Tugai forests in the central Asian deserts and has been the topic of dendrochronological studies in west China since the 1980s. However, little is known about its growth performance at its highest occurrence in the southern Qaidam Basin of the northern Tibetan Plateau. Increment cores of the Euphrates poplar population there did well cross-date and thus showed a high dendrochronological potential. Its growth was persistently positively correlated with temperature from previous September to current August although not significant throughout. The annual precipitation of around 41 mm can not exert any significant effect on Euphrates poplar growth in view of the extremely high annual pan evaporation of 2,150 mm. Water in the nearby Tuolahai River is limited to the period from June–September. The positive correlation of tree growth with spring/early summer temperature indicates that the riparian Euphrates poplar trees may benefit from an increasing river runoff due to an advanced and accelerated snow and glacier melting under warmer conditions. An above-average autumn/early winter temperature in the preceding year may lead to an extended water flow in the river bed and hence to an increased tree growth in the next year. It is crucial to protect this invaluable natural forest from undue human activity.  相似文献   

2.
Forest regeneration and expansion are occurring in many countries, with 80 million ha established from 2000 to 2012 under the Bonn accord and 17.5 million ha established from 1990 to 2005 according to the Food and Agriculture Organisation. Multiple reviews have linked increasing forest cover with reduced river flow and potentially detrimental effects downstream. Previous reviews have investigated trends in river flow response over time, but the influence of forest age remains uncertain. Partial river flow recovery (towards non‐forested conditions) has been reported in decades following forest establishment, but the role of climate in driving these trends has not been explored. Here, we evaluate river flow trends in 43 studies following forest establishment, which provide sufficient information to distinguish the effects of ageing forests from variable climate. Our meta‐analysis supports previous findings showing that forestation reduces annual river flow (by 23% after 5 years and 38% after 25 years) with greater reductions in catchments with higher mean annual precipitation, larger increases in forest cover, and which were idle, rather than agricultural land, prior to forestation. The impact of forests on river flow is sensitive to annual precipitation and potential evapotranspiration, but responses are highly variable. Forests affect river flow less when annual precipitation is low, and sensitivity to precipitation decreases as catchment aridity increases. The majority of catchments demonstrated persistent river flow declines after forest establishment. However, nine catchments showed partial flow recovery after an initial decrease, with peak flow reductions at an average age of 15 and across a range of tree species. The mean rate of recovery was 34 mm/year over 5 years. Partial flow recovery with forest age cannot be commonly expected, however, and forestation programmes should take into account that changes to annual river flow are likely to persist for up to five decades.  相似文献   

3.
Cottonwoods, riparian poplars, are facultative phreatophytes and can obtain water from shallow soil moisture originating from rainfall, or from the deeper capillary fringe above the alluvial water table that is recharged by river water infiltration. The correspondence between cottonwood growth and river flows should reveal the dependency upon alluvial groundwater and subsequently, the vulnerability to reduced river flows. To explore this association, we analyzed historic growth patterns of plains cottonwoods (Populus deltoides) along the Red Deer River (RDR), which is at the northwestern limit of the North American Great Plains. We developed chronologies of yearly radial increments (RI) and basal area increments (BAI) and explored correspondences with the environmental records from the past century. In this semi-arid region, the RI or BAI were not correlated with local precipitation while negative correlation with growth season temperature (T) (r = −0.37, p < 0.01) could reflect reduced growth with hot summers. There was correlation between growth and annual river discharge (Q, and particularly log Q that approximates river stage) and this increased with two year averaging (r = 0.51, p < 0.01), reflecting carry-over in the watershed hydrology and in the ecophysiological response. There was correspondence with the Pacific Decadal Oscillation index (PDO, r = −0.45, p < 0.01), which provides multi-decade transitions that influence Rocky Mountain headwater precipitation and other weather characteristics, and river flows. The combination of Q, PDO and T provided the strongest multiple regression model, accounting for 44% of the historic growth variation (52% correspondence for 1953–2013). The RDR was dammed in 1983, enabling winter flow augmentation, but summer flows were sustained and cottonwood growth and the streamflow correspondence persisted. This indicates that it is the pattern of dam operation and not damming per se that determines the fate of established riparian cottonwoods downstream. This study revealed that these cottonwoods are phreatophytic and dependent upon alluvial groundwater that is recharged from the river. This provides a research strategy to determine whether riparian woodlands along other regulated rivers are similarly groundwater-dependent and could be vulnerable to river flow reductions from excessive water withdrawal for irrigation or other uses, or with climate change.  相似文献   

4.
The red river hog (Potamochoerus porcus, Linnaeus) is a species of Suidae with populations ranging from western to central Africa. Little is known about the population status of red river hog, and few studies have investigated habitat characteristics associated with their occupancy which is critical in determining possible reasons behind suspected population declines. We used camera traps and site occupancy models to examine the effects of habitat covariates on occupancy of red river hog on Tiwai Island and in surrounding forests of Sierra Leone during two field seasons, 2008–2011. We also estimated group size and composition and growth patterns of juveniles. In both sampling periods, understory vegetation strongly influenced red river hog occupancy with greatest association with riparian and swamp vegetation types. Red river hogs seemed to avoid habitats of high human impact such as farmbush and secondary growth forests. Average group size was 2.46 ± 0.28 (SE) hogs per group. Growth patterns of juveniles suggested the majority of piglets were born during the middle of dry season (January–February). Our research suggests landscape use by red river hog is influenced by presence of riparian habitats with dense vegetation.  相似文献   

5.
气候变暖背景下杉木年轮密度对气候因子的响应   总被引:1,自引:0,他引:1  
为探讨杉木年轮密度与气候因子的响应关系,采用树木年轮学方法,以60年生杉木种源林为研究对象,测定杉木整轮密度、早材密度、晚材密度、晚材最大密度和早材最小密度,分析在气候变暖条件下主要气候因子(温度、降水、相对湿度)对杉木年轮密度及其生长的影响。结果表明:杉木不同年轮密度指标均受到温度、降水和相对湿度的显著影响。早材密度与当年夏季最高温度、当年5月降水量,最大密度与当年10月、当年秋季降水量,最小密度与前一年秋季降水量、最小相对湿度呈显著负相关。滑动相关分析表明气候因子在短时间尺度上对杉木生长影响的稳定性有显著影响,其中杉木年轮最大密度与当年10月、秋季的平均相对湿度和最小相对湿度,最小密度与当年2、3月的平均相对湿度和前一年秋季的平均相对湿度、最小相对湿度、降水量的负相关关系最为稳定。杉木年轮最小密度对前一年气候要素的响应存在滞后效应,且晚材密度对当年春季的气候要素响应也存在滞后效应。研究结果对开展亚热带针叶树种年轮生态学和年轮气候学研究具有重要参考价值,建议选择武夷山的天然林获取更长年表用于重建古气候。  相似文献   

6.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   

7.
Recent land-use changes in intensively managed forests such as Mediterranean coppice stands might profoundly alter their structure and function. We assessed how the abandonment of traditional management practices in coppice stands, which consisted of short cutting-cycles (10–15 years), has caused overaging (stems are usually much older than when they were coppiced) and altered their wood anatomy and hydraulic architecture. We studied the recent changes of wood anatomy, radial growth, and hydraulic architecture in two stands of Quercus pyrenaica, a transitional Mediterranean oak with ring-porous wood forming coppice stands in W–NW Spain. We selected a xeric and a mesic site because of their contrasting climates and disturbance histories. The xeric site experienced an intense defoliation after the severe 1993–1994 summer drought. The mesic site was thinned in late 1994. We studied the temporal variability in width, vessel number and diameter, and predicted the hydraulic conductivities (K h) of earlywood and latewood. In the mesic site, we estimated the vulnerability to xylem cavitation of earlywood vessels. Overaging caused a steep decline in latewood production at a cambial age of 14 years., which was close to the customary cutting cycle of Q. pyrenaica. The diameter distribution of vessels was bimodal, and latewood vessels only accounted for 4% of the K h. Overaging, acting as a predisposing factor in the decline episode, was observed at the xeric site, where most trees did not produce latewood in 1993–1995. At the mesic site, thinned trees formed wider tree-rings, more latewood and multiseriate tree-rings than overaged trees. The growth enhancement remained 8 years after thinning. Most of the hydraulic conductivity in earlywood was lost in a narrow range of potentials, between −2.5 and −3.5 MPa. We have shown how hydraulic conductivity and radial growth are closely related in Q. pyrenaica and how aging modulates this relationship.  相似文献   

8.
《Dendrochronologia》2014,32(2):127-136
We examined tree-ring growth in a naturally seeded old-growth slash pine (Pinus elliottii Engelm. var. elliottii) stand in coastal Georgia to develop growth-climate models and reconstruct past climatic conditions during the mid and late 1800s. We generated earlywood, latewood, and annual ring chronologies dating to 1818, based on 40 cores collected from 22 trees at the Wormsloe State Historic Site near Savannah, Georgia, with 28 cores dating before 1900. We used correlation and response function analysis to relate tree-ring growth to climatic variables and El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) indices. Water availability (represented by PDSI and secondarily, precipitation) was the most important factor determining growth for all three series, with latewood and September PDSI showing the strongest relationship. Like other species in the southeastern United States, moisture in the late winter and spring was crucial for earlywood development, while latewood and annual growth was enhanced in cooler, wetter summers, particularly with hurricanes bringing rainfall late in the growing season. Earlywood growth was greater following +ENSO (winter) phases and −NAO (winter) phases – for both indices, times when the northern Georgia coast is often relatively cool and wet. A verified split-calibration regression model based on latewood ring growth showed temporal stability and accounted for 27% of the variation in the observed September PDSI record from 1895 to 2009 (mean reduction in error = 0.21 and coefficient of efficiency = 0.05). During the instrument record, the timing of reconstructed and observed dry and moist periods matched closely; prior to that, reconstructed PDSI values indicated drought from the early 1840s to late 1850s – a period of unusually low latewood growth.  相似文献   

9.
One of the largest riparian restoration projects in the United States is currently taking place in California on the Sacramento River. Nearly 2,000 ha of land adjacent to the river channel have been revegetated with native riparian species in an effort to reestablish riparian forests. The objective of this study was to compare leaf litter decomposition rates in restored riparian forests to those in mature, naturally established riparian forests, in order to monitor the development of this ecosystem function in restored forests. Leaf litter decomposition rates were measured over 1 year in six restored riparian forests (4, 7, and 9 years old) and two mature remnant riparian forests (>50 years old), in order to test two hypotheses: (1) decomposition rates of restored and mature forests are significantly different and (2) decomposition rates in the chronosequence of restored forests are moving along a trajectory, approaching the decomposition rates characteristic of mature forests as they age. Statistical analyses revealed no significant differences in annual decay rates among the four different forest ages and no trajectory among leaf litter decomposition rates in restored forests. These results suggest that a functionally equivalent process of leaf litter decomposition occurs in both restored and naturally established forests and show promise for the efficiency of nutrient cycling processes in these restored forests.  相似文献   

10.
《Dendrochronologia》2014,32(3):237-244
The long-term radial growth responses to drought and climatic variability of less-studied species such as Abies borisii-regis (Mattf.) remain poorly understood.We tested the hypothesis that severe short-term drought conditions during summer months will impact the radial growth of A. borisii-regis (Mattf.) trees and such impact will have a more pronounced effect on latewood (LW) than earlywood (EW) width.Correlation analysis was employed to investigate the impact of climatic drivers (temperature, precipitation) and drought, using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated at cumulative time scales (1–12 months), on EW, LW and tree-ring width (TRW) in A. borisii-regis (Mattf.) trees from South-Eastern Albania.We found that EW width was positively correlated with precipitation in July and previous September, while the LW width and TRW was enhanced by the current June–July precipitation. Previous autumn and current summer high temperatures constrained the radial growth in A. borisii-regis (Mattf.) trees, particularly the LW and TRW. All the tree-ring widths components showed the highest significant response to drought at short cumulative time scales (<4 months) mainly during July, August and September. The highest impact of drought was observed for the LW width.Under a future reduction of summer precipitation and temperature increase, the A. borisii-regis (Mattf.) may show a decrease in EW formation, causing a decline of radial growth, leading to a reduction in hydraulic conductivity and carbon uptake in these forests.  相似文献   

11.
Riparian forests in natural desert oases are extremely vulnerable to water shortages; of late these shortages have been associated with climate change and with increased human-led water allocation. This study covers a hundred-year history (1876–2017) of riparian forest growth at the Ejina Oasis, which is located in the lower reaches of the Heihe River basin of northwestern China. We collected tree cores from Populus euphratica, which is the major tree species found in the Ejina riparian forests. These samples allowed us to chart variations in riparian forest growth and to examine correlations between tree growth and local precipitation, temperature, drought indices, groundwater depth, and runoff volume from the middle reaches of the river. We found that groundwater depth (groundwater being mainly recharged by runoff) is the major factor limiting tree-stem radial growth. We compared runoff reconstruction series from upper reaches and P. euphratica radial growth in the lower reaches. We found a period of greatly decreased growth (1942–1951); which seems to have been due to human water diversion. We note that mountain runoff increased after 2000, but that riparian forest growth didn’t increase in tandem; the water that would otherwise have supported the forests had been diverted. Our study provides a warning for future water resource planning and suggests the desirability of policies that will balance the needs of natural ecosystems (riparian forests) with the requirements of artificial ecosystems (croplands).  相似文献   

12.
The first trees in New York were Middle Devonian (earliest Givetian) cladoxyls (?Duisbergia and Wattieza), with shallow-rooted manoxylic trunks. Cladoxyl trees in New York thus postdate their latest Emsian evolution in Spitzbergen. Progymnosperm trees (?Svalbardia and Callixylon–Archaeopteris) appeared in New York later (mid-Givetian) than progymnosperm trees from Spitzbergen (early Givetian). Associated paleosols are evidence that Wattieza formed intertidal to estuarine mangal and Callixylon formed dry riparian woodland. Also from paleosols comes evidence that Wattieza and Callixylon required about 350 mm more mean annual precipitation than plants of equivalent stature today, that Wattieza tolerated mean annual temperature 7 °C less than current limits of mangal (20 °C), and Callixylon could tolerate temperatures 14 °C less than modern mangal. Devonian mangal and riparian woodland spread into New York from wetter regions elsewhere during transient paleoclimatic spikes of very high CO2 (3923 ± 238 ppmv), and subhumid (mean annual precipitation 730 ± 147 mm) conditions, which were more likely extrinsic atmospheric perturbations rather than consequences of tree evolution. For most of the Middle Devonian CO2 was lower (2263 ± 238 ppmv), and paleoclimate in New York was semiarid (mean annual precipitation 484 ± 147 mm). Such transient perturbations and immigration events may explain the 40 million year gap between the late Emsian (400 Ma) evolution of trees and Famennian (360 Ma) CO2 drawdown and expansion of ice caps.  相似文献   

13.
Tree species inhabiting riparian forests under Mediterranean climate have evolved to face summer water shortage but may fail to cope with future increases in drought severity. Thus, understanding tree growth phenological variations in response to environmental conditions is necessary to assess the impact of seasonal drought in riparian forests. In this study, we investigated the response of stem radial growth to climate in the narrow-leaved ash (Fraxinus angustifolia) over its distribution in southern Europe. We simulated intra- and inter-annual growth patterns using the Vaganov-Shashkin (VS) model considering five sites subjected to summer drought but showing different climate conditions. The growth pattern in this species varied from unimodal in cool-wet sites to facultative bimodal in warm-dry sites. Bimodal patterns were characterized by two growth peaks coinciding with favorable climate conditions in spring and autumn. The spring growth peak occurs earlier (May) in warm-dry sites than in wet-cool sites (June–July). The variation in the season growth length and growth timing suggests different strategies adopted by this species to cope with summer drought. The VS model revealed different growth patterns across which would be relevant in predicting the response of this and other riparian tree species to climate warming and aridification. Differences in the length of the growing season, timings of growth peaks and the shift from unimodal to bimodal growth patterns should be considered when assessing growth adjustments to future climate scenarios.  相似文献   

14.
Tropical dry forests (hereafter TDFs) have been extensively logged and converted into croplands or grasslands worldwide. Tumbesian forests in southwest Ecuador are among the most diverse and endangered TDFs. They face seasonal droughts of varied severity and are also subjected to episodic very wet and cloudy conditions during El Niño events. However, we lack a local quantification of their responses to regional climate (temperature, precipitation, cloud cover) and El Niño which could change across sites. Here we use dendrochronology to quantify the radial-growth rates and the responses to climate (mean temperatures, precipitation amount, cloud cover and drought severity) of two major tree species forming annual rings (Geoffroea spinosa, Handroanthus chrysanthus) in three TDFs with different local climate conditions. The lowest (1.0 mm yr−1) and the highest (2.1 mm yr−1) radial-growth rates of both tree species were found in the hottest-driest and moderately hot sites, respectively. G. spinosa growth responded positively to wet, cool and cloudy conditions in the hottest-driest and moderately hot sites, but the most intense response to drought was observed in the driest site at 1–5 months long scales. H. chrysanthus growth reacted positively to high growing-season precipitation in all sites, particularly in the driest site, and to cloudy conditions in moderately hot sites. The growth of H. chrysanthus was negatively associated to the Southern Oscillation Index in the dry-hot and in the moderately hot sites. Tree species coexisting in TDFs show varied growth responses to regional weather variability, drought severity and El Niño events across sites with different local climate conditions.  相似文献   

15.
While the forest-tundra zone in Siberia, Russia has been dendroclimatologically well-studied in recent decades, much less emphasis has been given to a wide belt of northern taiga larch forests located to the south. In this study, climate and local site conditions are explored to trace their influence on radial growth of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees developed on permafrost soils in the northern taiga. Three dendrochronological sites characterized by great differences in thermo-hydrological regime of soils were established along a short (ca. 100 m long) transect: on a river bank (RB), at riparian zone of a stream (RZ) and on a terrace (TER). Comparative analysis of the rate and year-to-year dynamics of tree radial growth among sites revealed considerable difference in both raw and standardized tree-ring width (TRW) chronologies obtained for the RZ site, characterized by shallow soil active layer depth and saturated soils. Results of dendroclimatic analysis indicated that tree-ring growth at all the sites is mostly defined by climatic conditions of a previous year and precipitation has stronger effect on TRW chronologies in comparison to the air temperatures. Remarkably, a great difference in the climatic response of TRW chronologies has been obtained for trees growing within a very short distance from each other. The positive relation of tree-ring growth with precipitation, and negative to temperature was observed in the dry site RB. In contrary, precipitation negatively and temperature positively influenced tree radial growth of larch at the water saturated RZ. Thus, a complicate response of northern Siberian larch forest productivity to the possible climate changes is expected due to great mosaic of site conditions and variability of environmental factors controlling tree-ring growth at different sites. Our study demonstrates the new possibilities for the future dendroclimatic research in the region, as various climatic parameters can be reconstructed from tree-ring chronologies obtained for different sites.  相似文献   

16.
 The conservation of riparian (river valley flood plain) forests relies on the provision of instream flows that are sufficient to sustain tree growth. In the present study, annual branch growth increments were investigated as an indicator of environmental favorability for riparian cottonwoods. Trees of three species, Populus angustifolia, P. balsamifera, and P. deltoides, and their natural interspecific hybrids, were studied at five sites along the Oldman and South Saskatchewan rivers in Alberta, Canada. Annual branch growth increments for the interval from 1983 to 1992 were positively correlated with stream flows (r 2 = 0.79 at Lethbridge) and slightly negatively correlated with weather variables that contribute to water demand: evaporation, temperature, wind, and/or sunshine. The combination of January to May stream flow (water supply) and June evaporation (water demand) almost entirely accounted for the branch growth variation across years (r 2 = 0.91 at Lethbridge). Tree ring increments were also investigated but were less closely correlated than branch increments across trees or with stream flow. Branch growth increments thus provide an accurate but short duration (1 or 2 decades) record of environmental favorability for growth. The close correlation between branch growth and stream flow indicates that water is the principal limitation to growth of these riparian cottonwoods and that these trees obtained their water from a source linked to the stream, the riparian water table. Analyses of branch increments should provide a management tool for (i) determining instream flow needs for riparian cottonwoods and (ii) analyzing impacts of stream flow alterations due to river damming or water diversion. Received: 8 May 1997 / Accepted: 23 September 1997  相似文献   

17.
Plant root architecture reveals the sources of water and nutrients but tree root systems are large and difficult to analyze. With riparian (floodplain) trees, river cut-banks provide natural hydraulic excavation of root systems and this presents a unique study opportunity. Subsequently, we developed the ‘Cut-bank Root Method’, a simple, quantitative approach for analyzing the distribution of coarse roots, based on analyses of photographs of river cut-banks. These reveal the vertical extent of roots and median root depths (Rd). We applied this method along six rivers draining the Canadian Rocky Mountains and observed tenfold difference in Rd. The floodplain forests were dominated by cottonwoods and from mountain to prairie zones we observed progressively deeper roots of Populus trichocarpa (black cottonwood, Rd ~ 0.3 m), P. balsamifera (balsam poplar), P. angustifolia (narrowleaf cottonwood), and P. deltoides (prairie cottonwood, Rd ~ 0.9 m), which had Rd similar to P. fremontii (Fremont cottonwood) in Nevada, USA. Roots were shallower for co-occurring facultative riparian trees, with Rd ~ 0.1 m for P. tremuloides (trembling aspen) and Picea glauca (white spruce). Across the Canadian sites, Rd for cottonwoods were strongly associated with a growth season moisture index (May through September precipitation—potential evapotranspiration; R2 = 0.97, P < 0.001). Thus, in wetter climates, riparian cottonwoods were shallow-rooted and would be more dependent upon rain than stream flow. Conversely, in the drier semi-arid regions the cottonwoods were phreatophytic, with deeper root systems in the capillary fringe above the alluvial ground-water table. These phreatophytic cottonwoods would be highly dependent upon stream flow and vulnerable to declining river flows due to river regulation or climate change.  相似文献   

18.
Large trees are critical components of forest ecosystems, but are declining in many forests worldwide. We predicted that growth of large trees is more vulnerable than that of small trees to high temperatures, because respiration and tissue maintenance costs increase with temperature more rapidly than does photosynthesis and these costs may be disproportionately greater in large trees. Using 5 00 000 measurements of eucalypt growth across temperate Australia, we found that high temperatures do appear to impose a larger growth penalty on large trees than on small ones. Average stem diameter growth rates at 21 °C compared with 11 °C mean annual temperature were 57% lower for large trees (58 cm stem diameter), but only 29% lower for small trees (18 cm diameter). While our results are consistent with an impaired carbon budget for large trees at warmer sites, we cannot discount causes such as hydraulic stress. We conclude that slower growth rates will impede recovery from extreme events, exacerbating the effects of higher temperatures, increased drought stress and more frequent fire on the tall eucalypt forests of southern Australia.  相似文献   

19.
Nowadays, the biological monitoring through the growth rings has received increasing attention from ecologists and toxicologists. Structural analysis of these rings allows the incorporation of a time component in the study of plant responses to environmental variation. This allows also to evaluate long time series from the woody plants. In this paper, we assessed the dendrochronological characteristics of Ceiba speciosa growing in forest environment and under urbanization impact. Stem samples were obtained with Pressler probe into trees growing the campus of the Oswaldo Cruz Foundation, adjacent to one of the main urban thoroughfares of the city of Rio de Janeiro (Avenida Brasil), and at Tinguá Biological Reserve, an important remnant of Atlantic Forest. The samples were processed and analyzed following usual dendrochronological methods, with COFECHA and ARSTAN softwares. A negative exponential curve was used for standardization of the series. The residual chronologies were correlated with precipitation and temperature indexes obtained from NOAA weather database. Growth rings are distinct and annual, marked by bands of marginal parenchyma, thick-walled and radially flattened fibres in latewood and distended rays in earlywood. In both sites, the intercorrelation between the trees was above 0.40. Ages ranged from 11 to 41 years in the urban site and from 27 to 64 years in the forest site. In urban area, mean annual increment and cumulative average growth rates were 6 mm/year and 142.62 mm, respectively. At the forest site, these rates were 4 mm/year and 173.07 mm, respectively. The comparison between cumulative radial increment of the two sites revealed that trees of the urban site had higher increment rates beginning at the start of their development and consequently, they showed similar diameters despite lower ages. Correlation analysis between the chronologies and climatic factors revealed a positive association between growth and hot and rainy periods for both study sites. However, there is an immediate response of urban trees in relation to the rains and, a late response of forest trees to the same factor. The dry and hot climate, typical of urban environments, and the absence of natural water reserves in urban soil, may explain this more immediate response of urban tree growth to rainfall and temperature indexes. Our results revealed that Ceiba speciosa is a plastic and stress-tolerant species that is able to survive and adapt to polluted urban conditions. These features, along with its wide natural distribution and frequent planting for city landscaping, make this species an important biomarker for environmental monitoring studies.  相似文献   

20.
《Aquatic Botany》2007,86(3):285-290
In order to evaluate intra-specific differences related to the source of propagules this study conducted biometric and germination analyses considering two physiograpic types of mangrove forests: fringe and shrub-basin. These forests represent the extremities of a marked gradient of tidal flooding frequency, going from river to salt flat. Germination tests were performed in control conditions (distilled water and without addition of water) and in solutions of NaCl or polyethylene glycol 6000 which are equivalent to water potentials (Ψ) of −0.4, −0.8, −1.6 and −2.4 MPa. The parameters analyzed were germinability (G; %) and mean germination time index (t, days), which report viability and vigour of propagules, respectively. Results revealed significant intra-specific differences: smaller propagules (differences were about 1.7 and 1.2 mm in length for Avicennia schaueriana and Laguncularia racemosa, respectively) with lower viability (differences were from 16.2 to 43.2% in G for both species) from shrub-basin in relation to fringe forest and stronger vigour (reductions in t were from 1 to 3 days) of the L. racemosa propagules from the shrubs. We also noted that water potentials promoted by NaCl were more severe for A. schaueriana than for L. racemosa and that the opposite effect occurred with PEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号