首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

2.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   

3.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

4.
CTXphi is a lysogenic, filamentous bacteriophage. Its genome includes the genes encoding cholera toxin (ctxAB), one of the principal virulence factors of Vibrio cholerae; consequently, nonpathogenic strains of V. cholerae can be converted into toxigenic strains by CTXphi infection. O139 Calcutta strains of V. cholerae, which were linked to cholera outbreaks in Calcutta, India, in 1996, are novel pathogenic strains that carry two distinct CTX prophages integrated in tandem: CTX(ET), the prophage previously characterized within El Tor strains, and a new CTX Calcutta prophage (CTX(calc)). We found that the CTX(calc) prophage gives rise to infectious virions; thus, CTX(ET)phi is no longer the only known vector for transmission of ctxAB. The most functionally significant differences between the nucleotide sequences of CTX(calc)phi and CTX(ET)phi are located within the phages' repressor genes (rstR(calc) and rstR(ET), respectively) and their RstR operators. RstR(calc) is a novel, allele-specific repressor that regulates replication of CTX(calc)phi by inhibiting the activity of the rstA(calc) promoter. RstR(calc) has no inhibitory effect upon the classical and El Tor rstA promoters, which are instead regulated by their cognate RstRs. Consequently, production of RstR(calc) renders a CTX(calc) lysogen immune to superinfection by CTX(calc)phi but susceptible (heteroimmune) to infection by CTX(ET)phi. Analysis of the prophage arrays generated by sequentially integrated CTX phages revealed that pathogenic V. cholerae O139 Calcutta probably arose via infection of an O139 CTX(ET)phi lysogen by CTX(calc)phi.  相似文献   

5.
Analysis of the CTX prophage and RS1 element in hybrid and altered Vibrio cholera O1 strains showed two classifiable groups. Group I strains contain a tandem repeat of classical CTX prophage on the small chromosome. Strains in this group either contain no element(s) or an additional CTX prophage or RS1 element(s) on the large chromosome. Group II strains harbor RS1 and CTX prophage, which has an E1 Tor type rstR and classical ctxB on the large chromosome.  相似文献   

6.
Thirty-four Vibrio cholerae isolates collected from a cholera outbreak in Hyderabad, South India were found to belong to serogroup Ol biotype El Tor serotype Ogawa. The genotype of all the isolates was confirmed by PCR assays. All the isolates were found PCR positive for ctxAB, ompW, rflOl, rtxC, and tcpA genes. All the isolates but one harboured rstR El Tor allele. However, one isolate carried both rstR EL Tor as well as rstR Classical alleles. Cholera toxin (ctxB) genotyping of the isolates confirmed the presence of altered cholera toxin B of classical biotype in all the isolates. All the isolates except VCH35 harboured an RS1-CTX prophage array on the large chromosome. The isolate VCH35 contained a tandem repeat of classical CTX prophage on the small chromosome. The clonal relationship among the V. cholerae isolates as carried out by enterobacterial repetitive intergenic consensus sequences PCR, BOX PCR and randomly amplified polymorphic DNA, uniformly showed a genetic relationship among the outbreak isolates. The results of this study suggest that altered El Tor biotype V. cholerae with the classical cholera toxin gene are involved in cholera outbreaks in India.  相似文献   

7.
霍乱弧菌溶源性噬菌体CTXΦ携带霍乱毒素基因ctxAB,通过其结构基因gⅢ编码产生的PⅢ蛋白识别霍乱弧菌毒素共调菌毛(toxin co-regulated pilus, TCP)的主要结构亚单位TcpA,从而感染具有TCP的霍乱弧菌,使之成为产毒菌株。CTXΦ还有不携带ctxAB的前体pre-CTXΦ,根据CTXΦ基因组中调控基因rstR序列型不同,可分成不同的型别。在不同霍乱弧菌菌株的基因组中,已发现CTXΦ/pre-CTXΦ基因组及其亚型的多种组合排列方式。研究该噬菌体家族的基因组多样性,能够分析其进化及在霍乱弧菌产毒株形成中的作用。本研究发现了4株O1和O139群霍乱弧菌非产毒株具有pre-CTXΦ基因组及多样的rstR序列型,进一步对pre-CTXΦ在4株菌株中的基因组特征进行了分析。利用第3代基因测序法(短读长测序技术和单分子长读长测序技术),获得了4株菌株的基因组序列。利用长读长测序和拼接分析,精确地获得了具有长片段重复序列结构的pre-CTXΦ基因组排列,明确了4株测序菌株中多样的pre-CTXΦ基因组排列。在非产毒株基因组菌株VC3193中发现了携带古典型pre-CTXΦ;还在菌株VC702的pre-CTXΦ基因组中首次发现了肺炎克雷白菌的转座子结构(Gen Bank序列号:SRIL00000000)。在这4株测序菌株中,受体TcpA以及pre-CTXΦ的PⅢ蛋白也具有明显差异的序列,有 TcpA和PⅢ新序列型,这提示了CTXΦ家族感染宿主菌的受体-配体相互识别的复杂对应关系。本研究丰富了对CTXΦ/pre-CTXΦ家族基因组及其整合排列的多样化认识,也为分析该溶源性噬菌体在不同遗传特征霍乱弧菌菌株间的水平转移和促使新产毒克隆形成方面提供了更多的证据。  相似文献   

8.
Aims: The objective of this study was to investigate the molecular diversity of CTX genetic element within toxigenic Vibrio cholerae genomes and to determine the genetic diversity of V. cholerae population collected in a 6‐year period (2004–2009) in Iran. Methods and Results: The results of mismatch amplification mutation assay (MAMA)‐PCR and sequencing showed cytosine nucleotide in positions 203 and 115 in all 50 El Tor V. cholerae strains, which is the same as classical ctxB sequence. One strain yielded amplicons with both El Tor and classical biotype primers in MAMA‐PCR indicative of presence of two copies of CTX phages with different genotypes (rstRET ctxBclass and rstRET ctxBET) integrated within the genome of this isolate, which suggested the integration of two different CTX phages at different occasions or point mutation in one copy of CTX. Sequencing and PCR analysis indicated the presence of hybrid CTX genotype (rstRET ctxclass) in 70·6% of the isolates; however, only El Tor RS1 phage has been integrated in flanking to the CTX phages with different genotypes. Conclusions: Enterobacterial repetitive intergenic consensus‐PCR (ERIC‐PCR) and ribosomal gene spacer‐PCR (RS‐PCR) showed a relatively homogenous population in different years. Our findings indicate that sequence analysis of RS and ctxB regions has more discriminative power than restriction‐based methods. Significance and Impact of the Study: Investigating the molecular diversity of CTX prophage among V. cholerae strains helps to establish a new valuable database of genetic information about isolates, which is of great importance for epidemiologic studies in Iran and other countries encountering cholera epidemics.  相似文献   

9.
The genotype and antibiotic resistance pattern of the toxigenic Vibrio cholerae strains associated with cholera outbreaks vary frequently. Fifty-one V. cholerae strains isolated from cholera outbreaks in Chennai (2002–2005) were screened for the presence of virulence and regulatory genes by multiplex polymerase chain reaction (PCR) assay. Genotyping of the isolates was done by VC1 primers derived from enterobacterial repetitive intergenic consensus (ERIC)-related sequence in V. cholerae. All the isolates possessed toxigenic genes, such as ctxA, ctxB, tcpA, ace, ompU, toxR and zot. Two different El Tor genotypes and one O139 genotype could be delineated by VC1-PCR. One of the El Tor genotypes was similar to the El Tor strains isolated from Bhind district and Delhi during 2004. Antibiotic susceptibility testing revealed greater variability among the isolates tested. All the isolates were found to be susceptible to norfloxacin, ciprofloxacin and tetracycline. Thiry-three per cent of the isolates were found to be resistant to more than 4 antibiotics and could be termed as multiple antibiotic resistant. Coexistence of O139 serogroup along with the El Tor biotype could be identified among the strains recovered during the period 2002–2004. The O139 isolates were found to be more susceptible to the antibiotics tested when compared to the El Tor isolates.  相似文献   

10.
The ctxAB genes encoding cholera toxin, reside in the genome of a filamentous bacteriophage CTXphi. The presence of CTX prophage in non-epidemic environmental Vibrio cholerae strains is rare. The CTX prophage, the lysogenic form of CTXphi in V. cholerae, is comprised of the 'RS2' and the 'Core'. Analysis of the rstR gene present in the RS2 region of the CTX prophage revealed the presence of new alleles of the prophages in four environmental non-O1, non-O139 strains VCE22 (O36), VCE228 (O27), VCE232 (O4) and VCE233 (O27), and the CTX prophages are located in the small chromosomes. Phylogenetic analysis based on the nucleotide sequences of the rstR and orfU (present in the core) genes of these prophages placed them in a single unique cluster, which is distally located compared with that of epidemic V. cholerae O1 strains. Further analysis indicated that the genome of the prophage present in the strain VCE22 is devoid of the ctxAB genes, called pre-CTX prophage and the strain also possess the toxin-coregulated pilus protein coding gene tcpA of classical type, another important pathogenicity determining locus of the epidemic V. cholerae strains. Comparative analysis of the nucleotide sequences of the rstR and orfU genes indicated that the pre-CTX prophage of VCE22 might be the progenitor of new alleles of the CTX prophages present in these environmental strains.  相似文献   

11.
A key pathogenicity factor of the cholera etiologic agent is cholera toxin (CT) whose synthesis is encoded by the ctxAB operon forming apart of the CTXphi ptophage. Alterations in the virulent properties of the cholera vibrios are based on the variability of the CTXphi prophage containing the genes for ctxAB, zot, ace, cep, orfU, and psh in its core region. At the same time, the mechanism of the porophage genome reorganization needs further and more profound analysis. The goal of this work was to demonstrate that transposon Tn5-Mob (Kmr), when introduced into the chromosome of the V. cholera model strain MAK757 El Tor biovar containing two copies of the CTXphi prophage provoked a reorganization in the CTXphi prophage consisting in the deletion of zot, ace, cep, orfU genes. The level of the CT biosynthesis in the insertion mutants MAK757 chr::Tn5-Mob still retaining only the ctxAB operon, increased more than 2000 times as compared to that of the original strain. The enhanced CT production was shown to be associated with the altered structure of the chromosomal DNA region containing one copy of the ctxAB operon encoding this protein biosynthesis. The mutation in the CTXphi genome induced by Tn5-Mob was unstable. Among 600 isolated colonies obtained after dissemination of the MAK757 chr::Tn5-Mob transposant capable of CT overproduction in the full medium with no antibiotics, 5.8% gave clones that in parallel to the loss of Kmr marker, appeared to be deprived of the ctxAB operon thus becoming non-toxinogenic. The observed formation of the V. cholerae insertion mutants both capable of CT overproduction and non-toxinogenic ones, may be indicative of an important role played in the evolution of the cholera pathogen by the CTXphi genome variability induced by Tn elements. The plasmidless V. cholerae El Tor strain characterized by type II CT hyperproduction thus obtained in our experiments could be used for the production of this protein routinely applied to construct efficient cholera diagnostic and prophylactic preparations.  相似文献   

12.
The resurgence of enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. The southern Indian state of Kerala is endemic to cholera. A V. cholerae strain isolated from the stool sample of a patient in Piravam, Kerala, South India, was analysed. However, this case occurred at a time not associated with cholera outbreaks, leading to concern among the State health officials. We compared the virulence potential of the isolate with that of the standard or reference strains, that have been widely used as positive control. The isolate was identified as V. cholerae O1 biotype El Tor serotype Inaba. The resistance pattern of the isolate to common antibiotics was examined and it was found to be multi-drug resistant in nature. The strain was analysed for the presence of the CTX genetic element, which encodes genes for cholera toxin and other important regulatory genes. It was found to be positive for all the genes tested. In Kerala, most of the cholera outbreaks have been reported to be caused by V. cholerae O1 El Tor belonging to Ogawa serotype. Interestingly, the V. cholerae strain isolated from this case has been found to be of Inaba serotype, which is rarely reported.  相似文献   

13.
Strains of Vibrio cholerae O1, biotypes El Tor and classical, were infected with a known temperate phage (PhiP15) and monitored over a 15-day period for prophage induction. Over the course of the experiment two morphologically and three genomically distinct virus-like particles were observed from the phage-infected El Tor strain by transmission electron microscopy and field inversion gel electrophoresis, respectively, whereas only one phage, PhiP15, was observed from the infected classical strain. In the uninfected El Tor culture one prophage was spontaneously induced after 6 days. No induction in either strain was observed after treatment with mitomycin C. Data indicate that El Tor biotypes of V. cholerae may be polylysogenic and that secondary infection can promote multiple prophage induction. These traits may be important in the transfer of genetic material among V. cholerae by providing an environmentally relevant route for multiple prophage propagation and transmission.  相似文献   

14.
Strains of hemolytic Vibrio cholerae O1 (El Tor vibrio) which are sensitive to Mukerjee's cholera phage group IV were isolated from cholera patients in North-East Thailand in 1986. Plaques of the phage on these hemolytic V. cholerae O1 were usually translucent but almost transparent on some strains, just like the plaques on non-hemolytic V. cholerae O1 (classical vibrio). These hemolytic V. cholerae O1 were lysogenized with the infection of cholera phage IV, and the lysogenized strains produced phage different from cholera phage IV. These hemolytic strains were classified into Cured type in prophage typing of V. cholerae O1, El Tor, because they were also lysogenized with Kappa phage and were hemolytic. When Cured-type V. cholerae O1, El Tor previously isolated in various countries were examined for the sensitivity to cholera phage IV, some of the isolates were sensitive.  相似文献   

15.
研究丝状噬菌体CTXΦ对O1群不同霍乱弧菌的水平转移效率及菌株的噬菌体免疫能力。利用带有氯霉素抗性基因遗传标记的CTXETΦ感染颗粒对O1群的4株不同霍乱弧菌进行体外和体内转染实验,根据氯霉素抗性筛选转染子,通过Southern Blot等方法进行验证并判断CTXΦ基因组的存在形式,计算比较不同菌株的转染率,分析转染及噬菌体免疫机制。带有遗传标记的CTXETΦ对古典型霍乱弧菌1119的体内转染率高于体外;体内转染实验中,古典菌株1119的转染率远高于其它3株El Tor型霍乱弧菌;在El Tor型霍乱弧菌中,不含rstR基因的IEM101的转染率高于另外两株带有rstR基因的霍乱弧菌2~3个数量级。古典型霍乱弧菌比El Tor型菌株对CTXETΦ噬菌体颗粒更易感,TCP菌毛的表达和rstR基因介导的噬菌体免疫影响CTXΦ在霍乱弧菌中的水平转移。  相似文献   

16.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   

17.
The genes encoding cholera toxin (ctxA and ctxB) are encoded in the genome of CTXphi, a filamentous phage that infects Vibrio cholerae. To study the evolutionary history of CTXphi, we examined genome diversity in CTX(phi)s derived from a variety of epidemic and nonepidemic Vibrio sp. natural isolates. Among these were three V. cholerae strains that contained CTX prophage sequences but not the ctxA and ctxB genes. These prophages each gave rise to a plasmid form whose genomic organization was very similar to that of the CTXphi replicative form, with the exception of missing ctxAB. Sequence analysis of these three plasmids revealed that they lacked the upstream control region normally found 5' of ctxA, as well as the ctxAB promoter region and coding sequences. These findings are consistent with the hypothesis that a CTXphi precursor that lacked ctxAB simultaneously acquired the toxin genes and their regulatory sequences. To assess the evolutionary relationships among additional CTX(phi)s, two CTXphi-encoded genes, orfU and zot, were sequenced from 13 V. cholerae and 4 V. mimicus isolates. Comparative nucleotide sequence analyses revealed that the CTX(phi)s derived from classical and El Tor V. cholerae isolates comprise two distinct lineages within otherwise nearly identical chromosomal backgrounds (based on mdh sequences). These findings suggest that nontoxigenic precursors of the two V. cholerae O1 biotypes independently acquired distinct CTX(phi)s.  相似文献   

18.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

19.
Genetic mapping of Vibrio cholerae enterotoxin structural genes   总被引:4,自引:2,他引:2       下载免费PDF全文
The structural genes which constitute the cholera toxin operon, ctxAB, were genetically mapped in the Vibrio cholerae El Tor strain RV79. This strain of V. cholerae contains two copies of the ctx operon located on a 7-kilobase-pair tandemly duplicated region. We began by isolating a vibriophage VcA1 insertion mutation in one of the two ctxA genes located in this region. The mutant carrying this ctxA::VcA1 insertion, DC24, was converted to a VcA1-facilitated donor by introduction of the conjugal plasmid pSJ15, which carries an inserted copy of a defective VcA1-like prophage. The donor characteristics of DC24(pSJ15) indicated that the ctxA::VcA1 insertion mutation was near the trp region of the V. cholerae chromosome. Subsequent RV79 three-factor crosses were performed between VcA1-facilitated donors and recipient strains carrying one of two structural gene mutations in ctx, either delta ctxA23P Kmr or delta ctx-7922. The former was constructed by an in vivo marker exchange procedure and could be scored either by its kanamycin resistance phenotype or by its lack of DNA sequences homologous to the ctxA region. The delta ctx-7922 mutation is a total deletion of both ctx copies of strain RV79. The three-factor cross data strongly suggest that the two ctx loci of RV79 map between the nal and his genes of V. cholerae in the trp nal his linkage group. Physical analysis and heterologous crosses between an RV79 El Tor donor and a 569B classical recipient indicates that one of the two 569B ctx operon copies maps in the same region as the RV79 ctx loci (i.e., linked to nal). Together with previously published observations, these data show that the ctx structural genes are not closely linked to other genes known to affect toxin production in V. cholerae.  相似文献   

20.
Vibrio cholerae isolates recovered from cholera outbreaks in Bhind district of Madhya Pradesh and Delhi, Northern India were characterized. The O1 serogroup isolates from Bhind outbreak were of Inaba serotype whereas both Ogawa and Inaba serotypes were recovered from Delhi. PCR analysis revealed that only O1 serogroup V. cholerae isolates carried the virulence-associated genes like ctxA, tcpA, ace, and zot. Molecular typing by repetitive sequence based ERIC, VCR1, and VC1 PCR’s revealed similar DNA profile for both Inaba and Ogawa serotypes. A discrete VC1-PCR band identified among the El Tor strains had greater similarity (>97%) to the V. cholerae genome sequence and therefore has the potential to be used as a marker for the identification of the V. cholerae strains. Non-O1 strains recovered from Bhind region differed among themselves as well as from that of the O1 isolates. All the O1 serogroup isolates possessed SXT element and were uniformly resistant to the antibiotics nalidixic acid, polymyxin-B, furazolidone, cloxacilin, trimethoprim-sulfamethaxazole, and vibriostatic agent 0129. Inaba strains from both Delhi and Bhind differed from Ogawa strains by their resistance to streptomycin despite sharing similar DNA patterns in all the three rep-PCRs. Though Delhi and Bhind are separate geographical regions in Northern India, Inaba strains from both these places appear to be closely related owing to their similarity in antibiogram and genetic profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号